

A Distributed Implementation of Training the Restricted Boltzmann Machine

University of Macau

Faculty of Science and Technology

A Distributed Implementation of Training
the Restricted Boltzmann Machine

by

Kin Tek NG, Student No: D-B0-2843-2

Final Project Report submitted in partial fulfillment

of the requirements of the Degree of

Bachelor of Science in Software Engineering

Project Supervisor

Prof. C. L. Philip CHEN

08 October 2014

A Distributed Implementation of Training the Restricted Boltzmann Machine

DECLARATION

I sincerely declare that:

1. I and my teammates are the sole authors of this report,

2. All the information contained in this report is certain and correct to the best of

my knowledge,

3. I declare that the thesis here submitted is original except for the source

materials explicitly acknowledged and that this thesis or parts of this thesis

have not been previously submitted for the same degree or for a different

degree, and

4. I also acknowledge that I am aware of the Rules on Handling Student

Academic Dishonesty and the Regulations of the Student Discipline of the

University of Macau.

Signature : _________________________

Name : Kin Tek NG

Student No. : D-B0-2843-2

Date : 08 October 2014

A Distributed Implementation of Training the Restricted Boltzmann Machine

ACKNOWLEDGEMENTS

The author would like to express his utmost gratitude to UM for providing the

opportunity to carry out a project as a partial fulfillment of the requirement for the

degree of Bachelor of Science.

Throughout this project, the author was very fortunate to receive the guidance and

encouragement from his supervisor…

A Distributed Implementation of Training the Restricted Boltzmann Machine

ABSTRACT

In these recent years, deep learning technique becomes very important in the artificial

intelligence research, especially in the machine learning field. Deep learning works

well in different applications in machine learning such as image, speech, document

processing, etc. Since deep learning is related to a lot of mathematical calculations.

Some well-known mathematical model running in behind of it, so it is hard to get start

as a novice. As most of deep architectures [1], such as, Deep Belief Network (DBN)

[2], Deep Boltzmann Machine [3], stacked auto-encoder [4], are related to or based on

the Restricted Boltzmann Machine (RBM) [5]. In this report, we are focus on the

training process [6] and distributed implementation of training the Restricted

Boltzmann Machine, also evaluating the performances of Restricted Boltzmann

Machine in distributed environment.

A Distributed Implementation of Training the Restricted Boltzmann Machine

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION 9

1.1 Background 9

1.2 Objective 9

CHAPTER 2. PRELIMINARY 10

2.1 Mathematics 10
2.1.1 Exponential Function 10
2.1.2 Logarithm Function 10
2.1.3 Derivative 10
2.1.4 Partial Derivatives 11
2.1.5 Stochastic Gradient Descent 11

2.2 Probability 11
2.2.1 Joint Distribution 11
2.2.2 Marginal Distribution 11
2.2.3 Conditional Distribution 12

2.3 Graphical Model 12
2.3.1 Markov Random Field 12
2.3.2 Generative Model 12

2.4 Machine Learning 12
2.4.1 Supervised Learning 12
2.4.2 Unsupervised Learning 12

CHAPTER 3. ENERGY-BASED MODELS 13

3.1 Model Establishment 13
3.1.1 Energy Function 13
3.1.2 Probability Distribution 13
3.1.3 Partition Function 14

3.2 Energy-Based Models with Hidden Variable 14
3.2.1 Introduction 14
3.2.2 Probability Distribution 14
3.2.3 Free Energy 14

CHAPTER 4. MODEL OPTIMIZATION 16

4.1 Objective Function 16

4.2 Stochastic Gradient Descent 16

4.3 Energy Function for Two-Layer Model 18

CHAPTER 5. RESTRICTED BOLTZMANN MACHINE 21

A Distributed Implementation of Training the Restricted Boltzmann Machine

5.1 EBM and RBM 21
5.1.1 Conditional Probability 22
5.1.2 RBM with Binary Units 23
5.1.3 Gibbs Sampling 23
5.1.4 Contrastive Divergence 24
5.1.5 Stochastic Gradient Descent in RBM 24

5.2 Update RBM 25

CHAPTER 6. EXPERIMENT 27

6.1 Description 27

6.2 Unsupervised Learning 27

6.3 Distribute Environment 29
6.3.1 Introduction 29
6.3.2 File System 29
6.3.3 Map Reduce Framework 30
6.3.4 Distribute Algorithm 31

6.4 Results 31
6.4.1 Interface 32
6.4.2 Classification 32
6.4.3 Image Restoration 33
6.4.4 Clustering 34

CHAPTER 7. CONCLUSION 35

CHAPTER 8. REFERENCES 36

CHAPTER 9. APPENDIX 37

A Distributed Implementation of Training the Restricted Boltzmann Machine

LIST OF FIGURES

Figure 1: The structure of Restricted Boltzmann Machine .. 9

Figure 2: Equation of f(x) = exp(-x) .. 13

Figure 3: Markov Chain of Gibbs Sampling.. 24

Figure 4: Bar-and-Stripe Benchmark ... 27

Figure 5: Accuracy Decrease when Dimension Increase .. 28

Figure 6: Time Complexity for Different Dimension .. 28

Figure 7: The Peak of Accuracy During The Number of Hidden Units Increase 29

Figure 8: Training Time Linear Increase for Increase Hidden Units 29

Figure 9: Nodes of The Cluster .. 29

Figure 10: Information of HDFS ... 30

Figure 11: Map Reduce Framework .. 30

Figure 12: Interface of Our Testing Tools ... 32

Figure 13: Experiment in Classification Problem .. 33

Figure 14: Experiment in Image Restoration ... 33

Figure 15: Experiment in Clustering Problem ... 34

Figure 16: Learning both Vertical and Horizontal Features .. 35

Figure 17: Automatically Correct in Gibbs Sampling ... 35

file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788236
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788237
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788238
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788239
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788240
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788241
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788242
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788243
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788244
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788245
file://pcapps/apps/Google%20Drive/FYP%20relate/new/FYP-DB028432-0606-1.docx%23_Toc389788246

A Distributed Implementation of Training the Restricted Boltzmann Machine

LIST OF TABLES

Table 1: Experiment Result for Different Dimension.. 27

Table 2: Experiment Result for Different Hidden Units .. 28

Table 3: Time Consuming in Different MR Process ... 31

A Distributed Implementation of Training the Restricted Boltzmann Machine

9 of 37 08 October 2014

CHAPTER 1. INTRODUCTION

1.1 Background

Restricted Boltzmann machine (RBM) is a two-layer model (see Figure 1), which

consists of a lot of nodes, we call them Neurons. Each node has a connection with

every node in the other layer. Each neuron has its own biases, we usually use the v for

represent the input data, and/or we call it visible nodes. In the other layer, we use h for

represent the features, and/or we call it hidden nodes. Also, there is a weight in each

connection, we use of w to represent it.

RBM is a generative stochastic graph model, which can be used to learn the

probability distribution [7] of unlabelled data from scratch. Therefore, it has another

property, which is to regenerate some samples from the probability distribution.

And how does it work? In fact

it is really simple, as we said,

this model can be used to learn

the probability, and generate

some samples from the

probability distribution. This

means that after our model has

been well trained, the

reconstruction samples which

were regenerated from the

distribution should be almost

the same as the original data.

1.2 Objective

We can find out the different in between the original data and the reconstruction data,

and our work is try to keep this value very small, which does somehow like to find the

minimum of a curve. We can use the gradient descend method easily to find out the

local minimum of the curve, so does the RBM. But there is another problem comes

out immediately. If we only have one curve, the minimum value can be found easily

by make use of the gradient descend method. How about if we have many different

curves, and want to find out a common minimum value. In the RBM, we are almost at

the same situation.

How to find out a parameter set can satisfy is a big challenge for us. Indeed, there are

thousands or even millions of parameters inside the deep model, how to use the

gradient descend method to solve this kind of question will be discuss in this report.

Figure 1: The structure of Restricted Boltzmann Machine

A Distributed Implementation of Training the Restricted Boltzmann Machine

10 of 37 08 October 2014

CHAPTER 2. PRELIMINARY

In this report, there are a lot of related mathematical, probability concepts. We will

discuss of them one by one here.

2.1 Mathematics

2.1.1 Exponential Function

Exponential is a mathematical operation, written as b
n
, involving two numbers, the

base b and the exponent (or power) n. When the base b will equal to Euler's number,

we donate it as e, is an important mathematical constant and can be calculated as

 (

)

 ∑

When the base is the Euler's number, and the exponent is n, we written it as exp(n).

There is some important property for the exponential such as the associativity of

multiplication is shown as

2.1.2 Logarithm Function

The logarithm function is a function related to the exponential function. The

logarithm function and exponential function has some relation in between is shown as

Where b is also call the base. When the base is equal to 2, we call it binary logarithm.

When the base is equal to 10, we call it common logarithm, we written it as lg(n).

When the base is equal to Euler's number, we call it nature logarithm, we written it as

ln(n).

There are some important properties for the logarithm such as the associativity of

multiplication and division is shown as

2.1.3 Derivative

The derivative of a function of a real variable measures the sensitivity to change of a

quantity f(x) or y (a function or dependent variable) which is determined by another

quantity x (the independent variable). We denote it as df(x)/dx or dy/dx. For example,

A Distributed Implementation of Training the Restricted Boltzmann Machine

11 of 37 08 October 2014

2.1.4 Partial Derivatives

Assumed that our function is related to more than one variable, we can do the

derivatives in each of the variable. The other variable we see as a constant value

during the partial derivatives. Assume that we have a function f is relate to two

variable x and y, we can denote the partial derivatives of f as

and .

2.1.5 Stochastic Gradient Descent

Usually in both the statistical estimation and machine learning will face a problem

about minimizing an objective function, which is in a form of summarization. Like

 ∑

Where J is the problem we want to find out the minimize value, is the samples we

use, is the parameter inside the function f, n is the number of samples.

In order to solve this problem, we can use the stochastic gradient descent [8][9]

method to solve it. The update rule of the parameter is

 ∑

2.2 Probability

2.2.1 Joint Distribution

When we have at least two random variables define in one probability distribution,

and each of the variable have their own given probability distribution. Joint

distribution is a probability distribution combination of that each of variable falls in

any particular range or discrete set of values specified for that variable.

In general, the joint probability distribution of n discrete random variables x1, x2 … xn

is equal to

 | |

2.2.2 Marginal Distribution

The marginal distribution of subset of a collection of random variables is the

probability distribution of the variables contained in the subset. The marginal

probability can be written as a summation of joint probability, for example,

probability P is define in two different variable spaces X and Y as

A Distributed Implementation of Training the Restricted Boltzmann Machine

12 of 37 08 October 2014

 ∑ ∑ |

2.2.3 Conditional Distribution

The conditional probability distribution when we have at least two random variable

spaces defines in the probability distribution. We want to find out the probability

distribute under some given variables, for example, probability P is define in two

different variable spaces X and Y. We want to find out the probability X given by Y as

 |

2.3 Graphical Model

A graphical model is a probabilistic model for which a graph denotes the conditional

dependence structure between random variables. Mainly have two branches: directed

acyclic graphical model and undirected graphical model, and the representation of

them are Bayesian networks and Markov networks.

2.3.1 Markov Random Field

Markov random field [10] is a set of random variables having a Markov property

described by an undirected graph and may be cyclic. Thus, a Markov network can

represent certain dependencies.

2.3.2 Generative Model

A generative model [11] is a model for randomly generating from some observable

data, typically contain some hidden parameters. It specifies a joint probability

distribution over the observable data and the hidden parameters.

2.4 Machine Learning

2.4.1 Supervised Learning

We can use the supervised learning to label some training data. Usually using the

label combines with the data to build an inferred function, this can be predicting the

label of the new examples. One of the examples is the classification problem, all the

data will separate in different categories. The commonest one is separate the data in

two categories, mainly use -1/+1 to represent which group does the data belong to.

2.4.2 Unsupervised Learning

The unsupervised learning is trying to find out the hidden structure of the data, such

as the relation in between different dimensions of the data. It is very hard to evaluate

the model except we have the label of the data before the training. One of the

examples is the clustering problem, which is trying to separate the data into different

groups systematically. In the same group will have some common factors, these

common factors are learned from the hidden structure.

A Distributed Implementation of Training the Restricted Boltzmann Machine

13 of 37 08 October 2014

CHAPTER 3. ENERGY-BASED MODELS

Energy-based model (EBM) is a probabilistic model, which associate a scalar energy

to each configuration of the variables of interest. A configuration is combined with a

lot of variables, for example, x={x1, x2, x3 … xm}, there are m variable inside the

configuration x. If each variable can be assigned two possible values, the number of

possible configuration will be 2
m

.

3.1 Model Establishment

3.1.1 Energy Function

As we said before, each configuration is composed by a lot of variable, and which is

difficult to measurement. So that we have to design a function for all the

configurations, that can convert each of the configuration into a value. We call this

function as an energy function, and denoted it as Energy(x) for the configuration x. In

addition, this energy function is bounded by a large set of parameters. We denote this

set of parameters as .

3.1.2 Probability Distribution

Assume that we have N different configurations x
1
, x

2
 … x

N
 in domain D, each of the

configuration can be convent to a value by make use of the energy function. Therefore,

we can calculate the energy value of all the configurations in domain D.

In addition, the value that converted by energy function may not be positive, then we

may cancel out part of the energy value during calculate the summation in between

energy values. What we do to settle this problem is to put the value into the

exponential function.

In fact, most of our energy will provide

a negative value, what we want is the

smallest energy value will have the

largest probability. Therefore, we will

first apply the negative sign in the value

before we put it into the exponential

function. Let us have summarize by

make use of (see Figure 2) to explain it,

when the Energy function return a small

value, it will become very large, which

magnify the negative value of the

energy.

We define the probability distribution of each configuration as that the energy value

of the particular configuration over the summation energy value of all configurations.

The probability distribution is denoted as

∑

Figure 2: Equation of f(x) = exp(-x)

A Distributed Implementation of Training the Restricted Boltzmann Machine

14 of 37 08 October 2014

3.1.3 Partition Function

We call the summation over all configurations as a normalizing factor, or the partition

function Z. We can use that to simplify the formula as

 ∑

3.2 Energy-Based Models with Hidden Variable

3.2.1 Introduction

In many cases, the observed variables cannot deeply represent the sample. Therefore,

we have to introduce some new variables to increase the representation power of the

model. The model can be improved by adding some hidden variables into the original

model.

The hidden variables is not part of the observed variables, it is not visible for us,

which we call it hidden nodes. But it plays an important role in calculate the energy

value. At the same time, the hidden variables are depended on the observed variables.

The hidden variables will be changing in different time under a particular

configuration.

We denoted the observed part of the configuration as x, and the non-observed part or

hidden variables as y. The energy function will accept x and y as its parameter, we

rewrite the energy function as Energy(x, y).

3.2.2 Probability Distribution

Now we apply the change of energy function into the distribution of the model. The

probability has a different form Eq. (3.3) as

Where p(x=x
i
, y=y

j
) is the joint distribution of the variables when x = x

i
 and y = y

j
.

But in fact, we do not care it so much. What we want is only the probability

distribution of the observed variables, since we cannot control the non-observed

variables. Therefore, we have better to convert the probability of the variable into a

form that only contains the observed variables. The easiest way is to calculate the

marginal distribution as

 ∑ ̃

 ̃

 ∑
 ̃

 ̃

3.2.3 Free Energy

We can see the Eq. (3.5) is very complicated and difficult to reuse for the future

calculation, so that we have better to change the representation. We will introduction

A Distributed Implementation of Training the Restricted Boltzmann Machine

15 of 37 08 October 2014

(inspired from physics) of free energy (x), which we wanted to change the

probability distribution format as the same as before. Then, we have

 ∑ (̃)

 ̃

And now we can try to find out how to get the Eq. (3.7), we can derive the equation of

free energy (x) from Eq. (3.5-3.6) as

 ∑

 ̃

 ̃

 (∑ (̃) ̃)

 ∑ (̃)

 ̃

At the same time, the partition function becomes

 ∑ ̃

 ̃

A Distributed Implementation of Training the Restricted Boltzmann Machine

16 of 37 08 October 2014

CHAPTER 4. MODEL OPTIMIZATION

4.1 Objective Function

The object of the energy-based models is try to find out the parameter , which can

makes every sample of configuration x
1
,x

2
…x

N
 can get a large amount of probability.

Since all the samples of configuration do not have any relation, we can easy to do the

multiplication in between them. Try to find out the parameter set can provide the

maximum values of all the possible samples, which does also the objective function

we want to find out. The objective function can be define as

 ∏ ()

But the multiplication inside the Eq. (4.1) is very complicate to calculate, we have to

change a little bit for this objective function, such as apply it into the natural

logarithm function. Since the natural logarithm function is a monotonically increasing

function, it would not affect the convergence of the parameter , and our problem will

become

 ()

 () () ()

 ∑ (())

Now the equation becomes simpler, but it is hard to calculate a maximization problem

at all. In order to solve it, we have better to convent the problem to a minimization

problem. The conversion is shown as

 ∑ (())

4.2 Stochastic Gradient Descent

We notice that the Eq. (4.3) can be solved by make use of the stochastic gradient

descent optimization method. The update rule of the parameter is

 ∑
 (())

Where is the step size or we called it as the learning rate in machine learning.

A Distributed Implementation of Training the Restricted Boltzmann Machine

17 of 37 08 October 2014

We can see there is a key value inside the stochastic gradient descent process, but it

seems very difficult to calculate. We take it out to do more calculation and translation,

until it can get a meaningful form.

First step is to apply Eq. (3.6), since what we focus is in EBM with hidden variable.

Make use of the property of logarithm function to do the conversion

 (())

 (())

 (())

 ()

 ∑ ̃ ̃

Secondly, calculate the partial derivative in the second part of the Eq. (4.5). We have

to compute the derivative in the logarithm function, and then the function inside the

logarithm function. The process is shown as

 ∑ ̃ ̃

 ∑ ̃ ̃

∑ ̂ ̂

∑

 ̃
 ̃

∑ ̂ ̂

∑ (̃)

 ̃
 ̃

∑ (̂) ̂

Thirdly, in the Eq. (4.6) we can see, the denominator ∑ (̂) ̂ , which was the

fixed value we defined in partition function Z. We can put it back into the

summarization in the divisor, and also take out the derivative part. We can find out

that there exists a pattern we see before in Eq. (3.6), so that we can use it to change

the representation as

∑ (̃)
 ̃
 ̃

∑ (̂) ̂

 ∑
 (̃)

 ̃

 ̃

 ∑ ̃
 ̃

 ̃

Finally, we combine the Eq. (4.5-4.7), and get the reasonable and meaningful formula:

A Distributed Implementation of Training the Restricted Boltzmann Machine

18 of 37 08 October 2014

 (())

 ()

 ∑ ̃

 ̃

 ̃

From the Eq. (4.8), we can see there exists two terms. One is positive and one is

negative. We can see the variable x has some different in between two terms, the

positive term is in the format of observed variables that we define before. The

negative term is in the format we define for the iterator, which may be anyone of the

N possible observed variables in the domain D.

As we see carefully, we can find out that the P(̃) is a probability distribution of ̃,

and is a function relate to ̃, so that we can find out the relation

 [

] ∑ ̃

 ̃

 ̃

Weighted average can be used to calculate the expected value. But it is too hard to

calculate the weighted average of all the samples. However, we know that the means

value will almost surely converge to it.

The Means value can be approximate by a number of samples, which can help us

easily to estimate the value of the expected value. Therefore, we can approximate

convent Eq. (4.9) into the mean value format as

 (())

 ()

| |
∑

 ̃

 ̃

As there are too many of possible variable ̃, how to choose the good samples is a big

problem for us to handle.

4.3 Energy Function for Two-Layer Model

We assume that the energy function can be written as a sum of terms associated with

at most one non-observed variables, which means that each of the non-observed

variable do not have a relation with other non-observed variable. Also, the same

restrict on the observed variables. Then, the energy function can be define as

 ∑

We can see the energy function include two parts, the first part is only involve the

observed variables, the second include the both the observed and non-observed

variables. It is because of the observed variables can directly affect the energy value.

The non-observed variables have to through the observed variables to affect the

energy value.

Every hidden variable is associated with a corresponding function, and share the

same observed variables. We can see all the observed variables will affect each non-

observed variable independently.

A Distributed Implementation of Training the Restricted Boltzmann Machine

19 of 37 08 October 2014

Now we apply the new Eq. (4.11) into the model we define before, and put it into the

probability distribution function Eq. (3.5). Since the conversion is so complicate, we

take out the partition function and separate the summarization function into different

parts. The distribution function is given by

 ∑
 ̃

 ̃

∑∑ ∑

∑∑ ∑ ∑

In Eq. (4.12) we can see that the function do not include in the scope of y, so that

we can take it out of the summarization scope. Secondly, the summarization of the

function is inside of the exponential function. According to the associativity of

multiplication of the exponential function, the addition in the exponent can be

converted to the multiplication form as

∑∑ ∑ ∑

 ∑∑ ∑ () () () ()

 ∑∑ ∑ () (∏ ()

)

 ()∑∑ ∑∏ ()

Next is to associate the items. We can see the scope of the summarization in Eq. (4.13)

is only related to the item . We can separate each item into the corresponding

multiplier. Then, we can find the common factor and merge them together again. The

process is shown as

∑∑ ∑∏ ()

 ∑ ()∑ () ∑ ()

 ∏∑ ()

A Distributed Implementation of Training the Restricted Boltzmann Machine

20 of 37 08 October 2014

We combine the Eq. (4.12 - 4.14), and get a formula by make use of the energy

function shown in Eq. (4.11) as

 ()

∏∑ ()

Apply the Eq. (4.15) into the left hand side of the Eq. (3.6) and obviously can get the

relation as

 ()

∏∑ ()

 () ()∏∑ ()

 (()∏∑ ()

)

According to the associativity of multiplication of the logarithm function, we can

have a further simplification in Eq. (4.16). In order to do that, we have to first extend

the whole formula as

 (()∏∑ ()

)

 (()∑ ()∑ () ∑ ()

)

 (()) (∑ ()

) (∑ ()

)

 (∑ ()

)

 ∑ (∑ ()

)

We combine the Eq. (4.16 - 4.17) together, and get the formula as

 ∑ (∑ ()

)

A Distributed Implementation of Training the Restricted Boltzmann Machine

21 of 37 08 October 2014

CHAPTER 5. RESTRICTED BOLTZMANN MACHINE

5.1 EBM and RBM

In our previous work, we have defined the EBM for a special two layer model. Also,

the RBM is a model with the same structure with it. What we want to do is to apply

the EBM into the RBM.

Typically, we can use a quadratic function to represent a general two-layer model as

Based on the structure of RBM, we can cancel out some useless coefficient and

rename some the coefficient in Eq. (5.1). Moreover, we have to change data format

into matrix for future calculation, change the function name into the energy function.

Then the new representation become

In the Eq. (5.2), we can see that b and c is the biases of the visible and hidden

variables, both of them are column vector. W is the weights in between the visible and

hidden variables.

In order to more suitable the two-layer energy-based model, we have to change the

equation in the format of Eq. (4.11). The representation become

 ∑

We compare the Eq. (4.11) and Eq. (5.3), found out that the function

and . We change the x into v, y into h. Then substitute them

into the Eq. (4.18), get the new formula of free energy as

 ∑ (∑ ()

)

 ∑ (∑ ()

)

 ∑ (∑ ()

)

A Distributed Implementation of Training the Restricted Boltzmann Machine

22 of 37 08 October 2014

5.1.1 Conditional Probability

The definition of conditional probability is about calculating the probability under

some given condition. We can inspect of this concept, to calculate the probability of

hidden units under the given observed variables.

In order to do that, we have first to define the probability distribution for the RBM. As

we make use of the EBM, we can also make use of definition of the probability

distribution in Eq. (3.1). Now we can define the conditional probability of hidden

variables given by observed variables equal to

 |
 ()

∑ ((̃ ̃)) ̃

∑ (̃ ̃) ̃

The h is in a vector format, so that we can separate it into n elements to have a further

simplification as

∑ (̃ ̃) ̃

 ∑ (̃ ̃) ̃

∏

∏ ∑ (̃ ̃

) ̃

 ∏

∑ (̃ ̃

) ̃

 ∏
 ()

∑ (̃) ̃

 | ∏ |

Also, we can reverse the operation, a similar derivation for P(v|h) is using the same

conditional probability mechanism as

 |
 ()

∑ (̃ ̃) ̃

∏ ()

∏ ∑ (̃ ̃) ̃

A Distributed Implementation of Training the Restricted Boltzmann Machine

23 of 37 08 October 2014

 ∏
 (())

∑ (() ̃) ̃

 ∏ (|)

5.1.2 RBM with Binary Units

Assume that our RBM is in binary nodes, which all the visible and hidden units are

only have two states, one or zero. In addition, we can continue to extend our Eq. (5.6)

and Eq. (5.7), where { } and { }. Then, we will have the formula

 |
 ()

∑ (̃) ̃ { }

 ()

 () ()

 (|)
 (())

∑ (() ̃) ̃ { }

 ()

 ()

 ()

Also, the Eq. (5.4) can also take the advantage of the binary units, get the simpler

representation in make use of { } as

 ∑ (∑ ()

 { }

)

 ∑ ()

5.1.3 Gibbs Sampling

We have discussed a lot time about the hidden variables or the hidden units, but we do

not talk about how we can get it. In fact, what we have to do is to sample the hidden

units.

A Distributed Implementation of Training the Restricted Boltzmann Machine

24 of 37 08 October 2014

Assume the samples of p(x) can be obtained by running a Markov chain to

convergence, we can use the Gibbs sampling [12] as the transition operator.

Gibbs sample of the joint of N random variables can be done by a

sequence of N sampling sub-step of the form | , where contains the

N-1 other random variable in sample S excluding .

For the RBM, the sample of

set of variables includes the

observed variables and hidden

variables. However, there is

no direct relation in between

different unit of the observed

variables, also the hidden

variables. We can see the

whole observed or hidden

variables as a sampling block.

Make use of the Gibbs sampling, use the hidden variables to sample the observed

variables, also can use the observed variables to sample the hidden variables.

According to Eq. (5.9 - 5.10), the Markov chain [13] (see Figure 3) can be written in

the representation as

 (|) ()

 (|) ()

When t is large enough, our samples () can be very close to the accurate

samples of p(v, h).

5.1.4 Contrastive Divergence

In practical, the update of variables has to pass through the whole Markov chain is

inefficiency. The other approach is to make use of the contrastive divergence (CD)

[14], it is a method to do the sampling only in a number of steps, but not go through

the whole chain. We denote one step of Gibbs sampling in the RBM is to sample both

the observed variables and hidden variables one times. We make use of the CD-k [15]

to represent the k-steps of Gibbs sampling. There is a lot of experiments show that the

CD-k can have an acceptable result even when k equal to 1.

5.1.5 Stochastic Gradient Descent in RBM

As we discuss before in CHAPTER 4, in order to optimize the EBM, we have to make

use of the stochastic gradient descent method. We can apply the same technique in the

RBM also. The update rule in Eq. (4.10) can only use the Gibbs sampling in CD-k to

represent the expectations as

 (())

 ()

 ()

h(1) h(0) h(t-1)

v
(1) v

(0)
v

(2)
v

(t)

…

Figure 3: Markov Chain of Gibbs Sampling

A Distributed Implementation of Training the Restricted Boltzmann Machine

25 of 37 08 October 2014

5.2 Update RBM

According to RBM, there are three important variables in between it, which is the W,

b and c, which all of them are the weights and biases for the node. We can make use

of the Eq. (5.10), to calculate the partial derivatives of Free energy for each parameter

 (∑ ())

 (())

 (∑ ())

 (())

 (∑ ())

Combining the Eq. (5.13 - 5.16), we can get the log-likelihood gradients for the RBM

as

 (())

 ()

 ()

 (
)

 (
)

 (())

 ()

 ()

 (
) (

)

A Distributed Implementation of Training the Restricted Boltzmann Machine

26 of 37 08 October 2014

 (())

 ()

 ()

A Distributed Implementation of Training the Restricted Boltzmann Machine

27 of 37 08 October 2014

CHAPTER 6. Experiment

6.1 Description

Our experiment is focus on the Bar-

and-Stripe Benchmark (BAS) (see

Figure 4), each of them has

units. Each of the benchmark will

randomly choose a direction in

horizontal or vertical. Then we will

randomly generate a pattern for n

values in binary. Assign the pattern

into the whole horizontal or vertical

lines in the benchmark.

Therefore, there are total different BAS benchmarks. We would like to

use the RBM to learning probability for different benchmarks.

6.2 Unsupervised Learning

What we are doing is to train the RBM in the unsupervised learning method. We first

generate sixty thousands of samples in Bar-and-Stripe Benchmark, and use the data to

do ten epoch of training. The follow (see Table 1) is our result.

Table 1: Experiment Result for Different Dimension

Dimension Num. Cases Hidden Units Training

Time(ms)

Accuracy

3x3 14 100 7489 99.99% ±0.01%

4x4 30 100 9264 99.99% ±0.01%

5x5 62 100 10981 99.99% ±0.01%

6x6 126 100 13387 99.10% ±0.90%

7x7 254 100 16038 95.64% ±3.31%

8x8 510 100 20965 63.00% ±5.72%

9x9 1022 100 24093 26.05% ±4.18%

10x10 2046 100 26823 6.83% ±2.01%

Figure 4: Bar-and-Stripe Benchmark

A Distributed Implementation of Training the Restricted Boltzmann Machine

28 of 37 08 October 2014

From this table, we can see that when the dimension become larger, the number of

cases will have an exponentially increase. The accuracy have an exponentially

decrease (see Figure 5), and the training time increase smoothly (see Figure 6)

according to the data length.

We can see that the accuracy decrease so fast against to the number of cases, but not

the dimension. So that what we decide to do is to increase number of hidden unit, to

increase the capability of learning of our model. We get the result is shown on (see

Table 2).

Table 2: Experiment Result for Different Hidden Units

Dimension Num. Cases Hidden Units Training

Time(ms)

Accuracy

10x10 2046 100 26823 6.83% ±2.01%

10x10 2046 200 52859 55.79% ±4.34%

10x10 2046 300 79652 76.56% ±3.50%

10x10 2046 400 103688 87.68% ±3.19%

10x10 2046 500 130488 95.61% ±1.39%

10x10 2046 600 153691 97.07% ±1.22%

10x10 2046 700 179362 98.11% ±0.90%

10x10 2046 800 205010 93.60% ±1.10%

10x10 2046 900 232951 90.92% ±1.76%

Figure 6: Time Complexity for

Different Dimension
Figure 5: Accuracy Decrease when

Dimension Increase

A Distributed Implementation of Training the Restricted Boltzmann Machine

29 of 37 08 October 2014

10x10 2046 1000 254856 87.12% ±2.53%

10x10 2046 2000 516659 95.69% ±1.38%

From our experiment, we can find out that when the number of hidden units increases,

the running time will also have the linear increase (see Figure 8). The accuracy will

also increase until a certain point (see Figure 7), after that will decrease a little bit.

What we consider is that, when the number of hidden units increase, the uncertainty

factor will also increase correspondingly, which will cause this kind of problem. How

to choose the number of hidden units is still a big problem in our point of view.

6.3 Distribute Environment

6.3.1 Introduction

Hadoop [16] is an open-source software framework for storage and large-scale

processing of data-sets on clusters of commodity hardware. Hadoop is an Apache top-

level project being built and used by a global community of contributors and users.

And which is licensed under the Apache License 2.0.

6.3.2 File System

The Hadoop distributed file system (HDFS) [17] is a distributed, scalable, and

portable file-system written in Java for the Hadoop framework. The whole file system

is a cluster of datanodes form the HDFS cluster (see Figure 9).

Figure 7: The Peak of Accuracy During

The Number of Hidden Units Increase
Figure 8: Training Time Linear Increase

for Increase Hidden Units

Figure 9: Nodes of The Cluster

A Distributed Implementation of Training the Restricted Boltzmann Machine

30 of 37 08 October 2014

And also there is some important information about the File System (see Figure 10)

6.3.3 Map Reduce Framework

Map Reduce is a framework [18] (see Figure 11) that can help us to handle the big

data. First this framework will separate the input stream into different splits, then each

split will assign to one of the datanode to do the map process. When the map process

has finished, it will have some key value pair collect for the next step. During the

collecting, the framework will help us to sort the data from all of the data nodes and

according by the key, and the merge all the values belong to this key into a vector.

The next is the reduce process, it will accept the key and value vector merged before.

The reduce will also collect the data and which is the final output for this framework.

Figure 10: Information of HDFS

Figure 11: Map Reduce Framework

In
p
u
t

d
at

a

Reduce

Map

O
u
tp

u
t

d
at

a Reduce

Map

Map

A Distributed Implementation of Training the Restricted Boltzmann Machine

31 of 37 08 October 2014

6.3.4 Distribute Algorithm

What we found out that the most time consuming part is that it has to calculate a lot of

matrix multiplication and sigmoid function during the update process of RBM, but it

only use very few of time to update parameters. Therefore, we decide to put the

matrix multiplication and the sigmoid calculation in parallel. The MR framework is a

good tool for conducting the parallel compilation, and also the data collection.

The table (see Table 3) is the time costs during the MR training process. We can see

that the CUP time increase when the number of splits increases. But at the same time

the training time is decrease. It is because of that the CPU time is summary of all

different splits, and most of the splits can run at the same time. In our cluster, there

are around twenty MR processes are running at the same time.

Table 3: Time Consuming in Different MR Process

Splits Map (ms) Reduce (ms) GC (ms) CPU (ms) Training

Time (ms)

1 42730

±12558

2253

±158

451

±70

46670

±13070

408683

5 55922

±4569

2216

±79

744

±128

48175

±3525

207543

10 83853

±12098

3689

±1478

1300

±344

56475

±3885

167552

20 142566

±5193

5469

±143

2706

±102

72760

±3540

184984

Without

MR

-- -- -- -- 206251

From this table, we can find out a problem that more splits would not have more

benefit in the MR framework. As it has to use more time to do the communication in

between different nodes, the MR initialize time is inefficient, etc. Therefore, how to

balance the value of number of splits also one challenge remaining.

But we can see that, when the number of data increases, there is a trend that the MR

framework will become more efficient, since we have not used the whole calculation

power in each split.

6.4 Results

We choose the 5x5 cases during the demonstration, since it is easy to understand and

also can display more clearly. During the training process, we are using the

supervised learning combined with the unsupervised learning. The most different of

them is the label will involve during the training process or not, and what we do is to

A Distributed Implementation of Training the Restricted Boltzmann Machine

32 of 37 08 October 2014

see the label as part of our data. The whole training process is in an unsupervised

learning.

6.4.1 Interface

Figure 12: Interface of Our Testing Tools

In our interface (see Figure 12), we can see there are two part. There are twelve

blocks contained in left hand side, each block has a label on top of it. The right hind

side has some slider and a button there.

The block in the upper left corner is the data we want to pass into the model we

trained. Beside the label, there is a bracket. Inside the bracket is the real label for the

benchmark. From left to right, and up to down direction is in different Gibbs steps in

the Gibbs sampling.

The first slider is to set how many random line of the benchmark will be hide. The

second slider is to set will we given the real label in the sampling process, we define

“1” to represent the label is given. The third slider is to set the disabling data. We use

“0” as using the middle value of the data to replace it. When we use “1”, the disabling

data will be replaced by some random variables. The button test is to take another

testing.

6.4.2 Classification

Classification problem [19] usually is a supervised learning problem, and we have

transformed it into an unsupervised problem. We put the label into the data before the

training process, which can help us to train the data and label simultaneously.

Our setting is very simple, since we want to classify which label this benchmark

belong to. We just need to hide the label in the beginning of the sampling process.

A Distributed Implementation of Training the Restricted Boltzmann Machine

33 of 37 08 October 2014

Figure 13: Experiment in Classification Problem

From the result (see Figure 13), we can see, since we only have 62 different cases, so

we first assign a label with 63 to it, and the true label is inside the parentheses, and

finally we can see it can learn the label very well.

From this experimental result, we can conclude that the RBM have the capability of

handle the classification problem, and the classification accuracy is also acceptable.

6.4.3 Image Restoration

Image Restoration problem is that a part of the image is lost, which may because of

transmission or compression. We know what the object is, such as we know the label.

We can set there are part of the benchmark is lost, we try to use the model to restore

the original benchmark.

Figure 14: Experiment in Image Restoration

From the result (see Figure 14), we can see that the missing part can be almost

implanted in the first step of the sample.

A Distributed Implementation of Training the Restricted Boltzmann Machine

34 of 37 08 October 2014

In this experiment, we can see that the RBM has the capability to learn the probability

from some unknown data [20]. The image restoration is successful at all.

6.4.4 Clustering

Some time we may get some data that we haven’t seen before, and we want to know

what it most likely belongs to. According to some predesigned knowledge, such as the

model what we trained, to clustering [21] it into one group of data. In addition, we use

our benchmark as the cluster centre, and the label as the cluster group id.

We can use our testing tool to make the whole block become almost mess, just remain

a little pattern belong to the BAS benchmark. We set there are four line of data is in a

random data, only remain one line contain the pattern of BAS benchmark. At the

same time, we disable the label in the beginning of the sampling process.

Figure 15: Experiment in Clustering Problem

From the result (see Figure 15), we firstly have to find out where is the pattern of

BAS benchmark. We notice that the fourth row is what we want to find.

The sample is become clearer for more Gibbs steps, which can learn the cluster group

number as our expectation for this sample.

In this experiment, we can see that the mess data become closer to one of our cluster

centre and cluster group in the Gibbs sampling. Finally we find out that data and label

is same as we generated. We think the RBM is good for clustering.

However, we mess up almost all the data, the samples which generated from the

model may not be the same as what our expectation. In the clustering process may

directly go to another cluster different from our expectation is acceptable.

A Distributed Implementation of Training the Restricted Boltzmann Machine

35 of 37 08 October 2014

CHAPTER 7. Conclusion

In our report, we discuss the process of how to train the RBM, the performance of

RBM in different settings, and the distributed implementation.

Also, we meet some problem during our research, like how to choose the number of

hidden variables for the RBM, how to choose the number of splits in the distributed

environment.

During the experiments, we found out the RBM can learn both vertical and horizontal

features at the same time (see Figure 16). Luckily, we find out the sample will most

likely converge to our expectation when we do more step of the sampling (see Figure

17).

Figure 16: Learning both Vertical and Horizontal Features

Figure 17: Automatically Correct in Gibbs Sampling

When the dimension of the data increases, we have to use more hidden units to

guarantee that the accuracy is acceptable in the sampling. There is a linear increase in

training time when the dimension of the data increases linearly, also a linear increase

with respect to the number of hidden variables. Combining these two factors, we can

see the trend that the training time will have a significant increase.

Distributed algorithm and parallel calculation obviously can help us to improve the

performance in training the model. How to improve the distributed algorithm,

increase the utilization of all the nodes inside the cluster and decrease the training

time are still big challenges for us.

A Distributed Implementation of Training the Restricted Boltzmann Machine

36 of 37 08 October 2014

CHAPTER 8. References

[1] Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends® in Machine
Learning 2.1 (2009): 1-127.

[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief
nets." Neural computation 18.7 (2006): 1527-1554.

[3] Salakhutdinov, Ruslan, and Geoffrey Hinton. "An efficient learning procedure for deep Boltzmann
machines." Neural computation 24.8 (2012): 1967-2006.

[4] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." Science 313.5786 (2006): 504-507.

[5] Le Roux, Nicolas, and Yoshua Bengio. "Representational power of restricted Boltzmann
machines and deep belief networks." Neural Computation 20.6 (2008): 1631-1649.

[6] Hinton, Geoffrey. "A practical guide to training restricted Boltzmann machines." Momentum 9.1
(2010): 926.

[7] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new
perspectives." (2013): 1-1.

[8] Bottou, Léon. "Large-scale machine learning with stochastic gradient descent"
Proceedings of COMPSTAT'2010. Physica-Verlag HD, 2010. 177-186.

[9] Zinkevich, Martin, et al. "Parallelized Stochastic Gradient Descent." NIPS. Vol. 4. No. 1.
2010.

[10] Salakhutdinov, Ruslan. "Learning in Markov Random Fields using Tempered Transitions"
NIPS. Vol. 22. 2009.

[11] Hinton, Geoffrey E. "Learning multiple layers of representation." Trends in cognitive
sciences 11.10 (2007): 428-434.

[12] Desjardins, Guillaume, et al. "Tempered Markov chain Monte Carlo for training of
restricted Boltzmann machines." International Conference on Artificial Intelligence and
Statistics. 2010.

[13] Bengio, Yoshua, et al. "Greedy layer-wise training of deep networks." Advances in neural
information processing systems 19 (2007): 153.

[14] Carreira-Perpinan, Miguel A., and Geoffrey E. Hinton. "On contrastive divergence
learning." Proceedings of the tenth international workshop on artificial intelligence and statistics. NP:
Society for Artificial Intelligence and Statistics, 2005.

[15] Tieleman, Tijmen. "Training restricted Boltzmann machines using approximations to the
likelihood gradient." Proceedings of the 25th international conference on Machine learning.
ACM, 2008.

[16] White, Tom. Hadoop: The Definitive Guide: The Definitive Guide. O'Reilly Media, 2009.

[17] Shvachko, Konstantin, et al. "The hadoop distributed file system." Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010.

[18] Chu, Cheng-Tao, et al. "Map-reduce for machine learning on multicore." NIPS. Vol. 6.
2006.

[19] Larochelle, Hugo, and Yoshua Bengio. "Classification using discriminative restricted
Boltzmann machines." Proceedings of the 25th international conference on Machine learning.
ACM, 2008.

[20] Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton. "Restricted Boltzmann
machines for collaborative filtering." Proceedings of the 24th international conference on
Machine learning. ACM, 2007.

[21] Coates, Adam, Andrew Y. Ng, and Honglak Lee. "An analysis of single-layer networks in
unsupervised feature learning." International Conference on Artificial Intelligence and
Statistics. 2011.

A Distributed Implementation of Training the Restricted Boltzmann Machine

37 of 37 08 October 2014

CHAPTER 9. Appendix

Cluster: Apache™ Hadoop®

Version: Hadoop 0.23.9

Num. Namenode: 1

Num. Datanode: 3

Operating System: CentOS release 6.4 (Final)

Kernel: Linux Version 2.6.32-358.el6.x86_64

Java: Java™ SE Runtime Environment (build 1.7.0_40-b43)

Computers: HP Compaq Elite 8300 MT PC

Processor: Intel® Core™ i7-3770 CPU @ 3.40GHz

RAM: 8 GB

NIC: Intel® PRO/1000 Network Connection

Devices: NETGEAR N600 Wireless Dual Band Gigabit Router WNDR3700v2

Num. port: 4

NIC: Gigabit Ethernet

