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ABSTRACT 

In these recent years, deep learning technique becomes very important in the artificial 

intelligence research, especially in the machine learning field. Deep learning works 

well in different applications in machine learning such as image, speech, document 

processing, etc. Since deep learning is related to a lot of mathematical calculations. 

Some well-known mathematical model running in behind of it, so it is hard to get start 

as a novice. As most of deep architectures [1], such as, Deep Belief Network (DBN) 

[2], Deep Boltzmann Machine [3], stacked auto-encoder [4], are related to or based on 

the Restricted Boltzmann Machine (RBM) [5]. In this report, we are focus on the 

training process [6] and distributed implementation of training the Restricted 

Boltzmann Machine, also evaluating the performances of Restricted Boltzmann 

Machine in distributed environment. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Restricted Boltzmann machine (RBM) is a two-layer model (see Figure 1), which 

consists of a lot of nodes, we call them Neurons. Each node has a connection with 

every node in the other layer. Each neuron has its own biases, we usually use the v for 

represent the input data, and/or we call it visible nodes. In the other layer, we use h for 

represent the features, and/or we call it hidden nodes. Also, there is a weight in each 

connection, we use of w to represent it. 

RBM is a generative stochastic graph model, which can be used to learn the 

probability distribution [7] of unlabelled data from scratch. Therefore, it has another 

property, which is to regenerate some samples from the probability distribution. 

And how does it work? In fact 

it is really simple, as we said, 

this model can be used to learn 

the probability, and generate 

some samples from the 

probability distribution. This 

means that after our model has 

been well trained, the 

reconstruction samples which 

were regenerated from the 

distribution should be almost 

the same as the original data.  

1.2 Objective 

We can find out the different in between the original data and the reconstruction data, 

and our work is try to keep this value very small, which does somehow like to find the 

minimum of a curve. We can use the gradient descend method easily to find out the 

local minimum of the curve, so does the RBM. But there is another problem comes 

out immediately. If we only have one curve, the minimum value can be found easily 

by make use of the gradient descend method. How about if we have many different 

curves, and want to find out a common minimum value. In the RBM, we are almost at 

the same situation. 

How to find out a parameter set can satisfy is a big challenge for us. Indeed, there are 

thousands or even millions of parameters inside the deep model, how to use the 

gradient descend method to solve this kind of question will be discuss in this report.  

 

Figure 1: The structure of Restricted Boltzmann Machine 
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CHAPTER 2. PRELIMINARY 

In this report, there are a lot of related mathematical, probability concepts. We will 

discuss of them one by one here.  

2.1 Mathematics 

2.1.1 Exponential Function 

Exponential is a mathematical operation, written as b
n
, involving two numbers, the 

base b and the exponent (or power) n. When the base b will equal to Euler's number, 

we donate it as e, is an important mathematical constant and can be calculated as  

           (  
 

 
)
 

  ∑
 

  
 
                                                 

When the base is the Euler's number, and the exponent is n, we written it as exp(n). 

There is some important property for the exponential such as the associativity of 

multiplication is shown as  

                                                                        

2.1.2 Logarithm Function 

The logarithm function is a function related to the exponential function. The 

logarithm function and exponential function has some relation in between is shown as  

                                                                    

                                                                         

Where b is also call the base. When the base is equal to 2, we call it binary logarithm. 

When the base is equal to 10, we call it common logarithm, we written it as lg(n). 

When the base is equal to Euler's number, we call it nature logarithm, we written it as 

ln(n).  

There are some important properties for the logarithm such as the associativity of 

multiplication and division is shown as 

                                                             

    

 

 
                                                       

2.1.3 Derivative 

The derivative of a function of a real variable measures the sensitivity to change of a 

quantity f(x) or y (a function or dependent variable) which is determined by another 

quantity x (the independent variable). We denote it as df(x)/dx or dy/dx. For example, 
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2.1.4 Partial Derivatives 

Assumed that our function is related to more than one variable, we can do the 

derivatives in each of the variable. The other variable we see as a constant value 

during the partial derivatives. Assume that we have a function f is relate to two 

variable x and y, we can denote the partial derivatives of f as            

and           . 

2.1.5 Stochastic Gradient Descent 

Usually in both the statistical estimation and machine learning will face a problem 

about minimizing an objective function, which is in a form of summarization. Like 

      ∑       

 

   

                                                       

Where J is the problem we want to find out the minimize value,    is the samples we 

use,   is the parameter inside the function f, n is the number of samples. 

In order to solve this problem, we can use the stochastic gradient descent [8][9] 

method to solve it. The update rule of the parameter   is 

            ∑       

 

   

                                 

2.2 Probability 

2.2.1 Joint Distribution 

When we have at least two random variables define in one probability distribution, 

and each of the variable have their own given probability distribution. Joint 

distribution is a probability distribution combination of that each of variable falls in 

any particular range or discrete set of values specified for that variable. 

In general, the joint probability distribution of n discrete random variables x1, x2 … xn 

is equal to 

                        |          |                            

2.2.2 Marginal Distribution 

The marginal distribution of subset of a collection of random variables is the 

probability distribution of the variables contained in the subset. The marginal 

probability can be written as a summation of joint probability, for example, 

probability P is define in two different variable spaces X and Y as 
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       ∑           ∑     |           

  

               

2.2.3 Conditional Distribution 

The conditional probability distribution when we have at least two random variable 

spaces defines in the probability distribution. We want to find out the probability 

distribute under some given variables, for example, probability P is define in two 

different variable spaces X and Y. We want to find out the probability X given by Y as 

     |      
          

      
                                              

2.3 Graphical Model 

A graphical model is a probabilistic model for which a graph denotes the conditional 

dependence structure between random variables. Mainly have two branches: directed 

acyclic graphical model and undirected graphical model, and the representation of 

them are Bayesian networks and Markov networks. 

2.3.1 Markov Random Field 

Markov random field [10] is a set of random variables having a Markov property 

described by an undirected graph and may be cyclic. Thus, a Markov network can 

represent certain dependencies.  

2.3.2 Generative Model 

A generative model [11] is a model for randomly generating from some observable 

data, typically contain some hidden parameters. It specifies a joint probability 

distribution over the observable data and the hidden parameters. 

2.4 Machine Learning 

2.4.1 Supervised Learning 

We can use the supervised learning to label some training data. Usually using the 

label combines with the data to build an inferred function, this can be predicting the 

label of the new examples. One of the examples is the classification problem, all the 

data will separate in different categories. The commonest one is separate the data in 

two categories, mainly use -1/+1 to represent which group does the data belong to.  

2.4.2 Unsupervised Learning 

The unsupervised learning is trying to find out the hidden structure of the data, such 

as the relation in between different dimensions of the data. It is very hard to evaluate 

the model except we have the label of the data before the training. One of the 

examples is the clustering problem, which is trying to separate the data into different 

groups systematically. In the same group will have some common factors, these 

common factors are learned from the hidden structure. 
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CHAPTER 3. ENERGY-BASED MODELS 

Energy-based model (EBM) is a probabilistic model, which associate a scalar energy 

to each configuration of the variables of interest. A configuration is combined with a 

lot of variables, for example, x={x1, x2, x3 … xm}, there are m variable inside the 

configuration x. If each variable can be assigned two possible values, the number of 

possible configuration will be 2
m

. 

3.1 Model Establishment 

3.1.1 Energy Function 

As we said before, each configuration is composed by a lot of variable, and which is 

difficult to measurement. So that we have to design a function for all the 

configurations, that can convert each of the configuration into a value. We call this 

function as an energy function, and denoted it as Energy(x) for the configuration x. In 

addition, this energy function is bounded by a large set of parameters. We denote this 

set of parameters as  . 

3.1.2 Probability Distribution 

Assume that we have N different configurations x
1
, x

2
 … x

N
 in domain D, each of the 

configuration can be convent to a value by make use of the energy function. Therefore, 

we can calculate the energy value of all the configurations in domain D.  

In addition, the value that converted by energy function may not be positive, then we 

may cancel out part of the energy value during calculate the summation in between 

energy values. What we do to settle this problem is to put the value into the 

exponential function. 

In fact, most of our energy will provide 

a negative value, what we want is the 

smallest energy value will have the 

largest probability. Therefore, we will 

first apply the negative sign in the value 

before we put it into the exponential 

function. Let us have summarize by 

make use of (see Figure 2) to explain it, 

when the Energy function return a small 

value, it will become very large, which 

magnify the negative value of the 

energy.  

We define the probability distribution of each configuration as that the energy value 

of the particular configuration over the summation energy value of all configurations. 

The probability distribution is denoted as 

     
                

∑                      

                                                  

Figure 2: Equation of f(x) = exp(-x)  
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3.1.3 Partition Function 

We call the summation over all configurations as a normalizing factor, or the partition 

function Z. We can use that to simplify the formula as  

  ∑                  

    

                                                

     
                

 
                                                  

3.2 Energy-Based Models with Hidden Variable 

3.2.1 Introduction 

In many cases, the observed variables cannot deeply represent the sample. Therefore, 

we have to introduce some new variables to increase the representation power of the 

model. The model can be improved by adding some hidden variables into the original 

model. 

The hidden variables is not part of the observed variables, it is not visible for us, 

which we call it hidden nodes. But it plays an important role in calculate the energy 

value. At the same time, the hidden variables are depended on the observed variables. 

The hidden variables will be changing in different time under a particular 

configuration. 

We denoted the observed part of the configuration as x, and the non-observed part or 

hidden variables as y. The energy function will accept x and y as its parameter, we 

rewrite the energy function as Energy(x, y). 

3.2.2 Probability Distribution 

Now we apply the change of energy function into the distribution of the model. The 

probability has a different form Eq. (3.3) as 

       
                  

 
                                                  

Where p(x=x
i
, y=y

j
) is the joint distribution of the variables when x = x

i
 and y = y

j
. 

But in fact, we do not care it so much. What we want is only the probability 

distribution of the observed variables, since we cannot control the non-observed 

variables. Therefore, we have better to convert the probability of the variable into a 

form that only contains the observed variables. The easiest way is to calculate the 

marginal distribution as  

     ∑     ̃ 

 ̃

 ∑
                ̃  

 
 ̃

                             

3.2.3 Free Energy 

We can see the Eq. (3.5) is very complicated and difficult to reuse for the future 

calculation, so that we have better to change the representation. We will introduction 
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(inspired from physics) of free energy  (x), which we wanted to change the 

probability distribution format as the same as before. Then, we have 

     
           

 
                                                          

         ∑   (           ̃ )                                

 ̃

 

And now we can try to find out how to get the Eq. (3.7), we can derive the equation of 

free energy  (x) from Eq. (3.5-3.6) as  

           

 
 ∑

                ̃  

 
 ̃

                                                

              (  ∑    (           ̃ ) ̃ )                                 

         ∑   (           ̃ )                                     

 ̃

 

At the same time, the partition function becomes 

  ∑         ̃  

 ̃
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CHAPTER 4. MODEL OPTIMIZATION 

4.1 Objective Function 

The object of the energy-based models is try to find out the parameter  , which can 

makes every sample of configuration x
1
,x

2
…x

N
 can get a large amount of probability. 

Since all the samples of configuration do not have any relation, we can easy to do the 

multiplication in between them. Try to find out the parameter set can provide the 

maximum values of all the possible samples, which does also the objective function 

we want to find out.  The objective function   can be define as 

                                                                

 ∏  (  )

    

                                                            

But the multiplication inside the Eq. (4.1) is very complicate to calculate, we have to 

change a little bit for this objective function, such as apply it into the natural 

logarithm function. Since the natural logarithm function is a monotonically increasing 

function, it would not affect the convergence of the parameter  , and our problem will 

become 

            (                )                                         

       (     )    (     )      (     )           

     ∑   ( (  ))

    

                                                      

Now the equation becomes simpler, but it is hard to calculate a maximization problem 

at all. In order to solve it, we have better to convent the problem to a minimization 

problem. The conversion is shown as 

                 ∑    ( (  ))

    

                                

4.2 Stochastic Gradient Descent 

We notice that the Eq. (4.3) can be solved by make use of the stochastic gradient 

descent optimization method. The update rule of the parameter is 

                                                                              

     ∑  
   ( (  ))

  
                                       

    

 

Where   is the step size or we called it as the learning rate in machine learning. 
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We can see there is a key value inside the stochastic gradient descent process, but it 

seems very difficult to calculate.  We take it out to do more calculation and translation, 

until it can get a meaningful form. 

First step is to apply Eq. (3.6), since what we focus is in EBM with hidden variable. 

Make use of the property of logarithm function to do the conversion 

 
   ( (  ))

  
  

   
   (  (  ))

 
  

                                                                  

   
      (  (  ))

  
 

    

  
                                                

  
  (  )

  
 

   ∑          ̃   ̃

  
                                        

Secondly, calculate the partial derivative in the second part of the Eq. (4.5). We have 

to compute the derivative in the logarithm function, and then the function inside the 

logarithm function. The process is shown as  

   ∑          ̃   ̃

  
  

 ∑          ̃   ̃

  
∑          ̂   ̂

                                                      

  
∑

          ̃  
   ̃

∑          ̂   ̂
                                                       

   
∑    (    ̃ )

    ̃ 
   ̃

∑    (    ̂ ) ̂

                                   

Thirdly, in the Eq. (4.6) we can see, the denominator ∑    (    ̂ ) ̂  , which was the 

fixed value we defined in partition function Z. We can put it back into the 

summarization in the divisor, and also take out the derivative part. We can find out 

that there exists a pattern we see before in Eq. (3.6), so that we can use it to change 

the representation as  

∑    (    ̃ )
    ̃ 
   ̃

∑    (    ̂ ) ̂

  ∑
   (    ̃ )

 
 
    ̃ 

  
 ̃

                                 

  ∑   ̃  
    ̃ 

  
                                         

 ̃

 

Finally, we combine the Eq. (4.5-4.7), and get the reasonable and meaningful formula:  
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   ( (  ))

  
  

  (  )

  
 ∑   ̃  

    ̃ 

  
 ̃

                                     

From the Eq. (4.8), we can see there exists two terms. One is positive and one is 

negative. We can see the variable x has some different in between two terms, the 

positive term is in the format of observed variables that we define before. The 

negative term is in the format we define for the iterator, which may be anyone of the 

N possible observed variables in the domain D.  

As we see carefully, we can find out that the P( ̃) is a probability distribution of  ̃, 

and       is a function relate to  ̃, so that we can find out the relation 

 [
     

  
]    ∑   ̃  

    ̃ 

  
 ̃

                                             

Weighted average can be used to calculate the expected value. But it is too hard to 

calculate the weighted average of all the samples. However, we know that the means 

value will almost surely converge to it.  

The Means value can be approximate by a number of samples, which can help us 

easily to estimate the value of the expected value. Therefore, we can approximate 

convent Eq. (4.9) into the mean value format as 

 
   ( (  ))

  
  

  (  )

  
 

 

| |
∑

    ̃ 

  
                                

 ̃  

 

As there are too many of possible variable  ̃, how to choose the good samples is a big 

problem for us to handle. 

4.3 Energy Function for Two-Layer Model 

We assume that the energy function can be written as a sum of terms associated with 

at most one non-observed variables, which means that each of the non-observed 

variable do not have a relation with other non-observed variable. Also, the same 

restrict on the observed variables. Then, the energy function can be define as 

                   ∑         

 

                                

We can see the energy function include two parts, the first part is only involve the 

observed variables, the second include the both the observed and non-observed 

variables. It is because of the observed variables can directly affect the energy value. 

The non-observed variables have to through the observed variables to affect the 

energy value. 

Every hidden variable is associated with a corresponding   function, and share the 

same observed variables. We can see all the observed variables will affect each non- 

observed variable independently.  
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Now we apply the new Eq. (4.11) into the model we define before, and put it into the 

probability distribution function Eq. (3.5). Since the conversion is so complicate, we 

take out the partition function and separate the summarization function into different 

parts. The distribution function is given by 

     ∑
                ̃  

 
 ̃

                                                         

 
 

 
∑∑ ∑                  

      

                                    

 
 

 
∑∑ ∑          ∑        

 

 

      

                      

In Eq. (4.12) we can see that the function   do not include in the scope of y, so that 

we can take it out of the summarization scope. Secondly, the summarization of the   

function is inside of the exponential function. According to the associativity of 

multiplication of the exponential function, the addition in the exponent can be 

converted to the multiplication form as 

∑∑ ∑          ∑        

 

 

      

                                                                          

 ∑∑ ∑   (    )    (         )   (         )    (         )

      

 

 ∑∑ ∑   (    ) (∏   (         )

 

)

      

                                                        

     (    )∑∑ ∑∏   (         )

       

                                                     

Next is to associate the items. We can see the scope of the summarization in Eq. (4.13) 

is only related to the item    . We can separate each item into the corresponding 

multiplier. Then, we can find the common factor and merge them together again. The 

process is shown as 

∑∑ ∑∏   (         )

       

                                                           

 ∑   (         )∑   (         ) ∑   (         )

      

 

 ∏∑   (         )
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We combine the Eq. (4.12 - 4.14), and get a formula by make use of the energy 

function shown in Eq. (4.11) as 

     
   (    )

 
∏∑   (         )

   

                           

Apply the Eq. (4.15) into the left hand side of the Eq. (3.6) and obviously can get the 

relation as 

           

 
 

   (    )

 
∏∑   (         )

   

                                 

   (     )     (    )∏∑   (         )

   

                                 

        (   (    )∏∑   (         )

   

)            

According to the associativity of multiplication of the logarithm function, we can 

have a further simplification in Eq. (4.16). In order to do that, we have to first extend 

the whole formula as 

  (   (    )∏∑   (         )

   

)                                                                            

   (   (    )∑   (         )∑   (         ) ∑   (         )

      

) 

   (   (    ))    (∑   (         )

  

)    (∑   (         )

  

)          

   (∑   (         )

  

) 

      ∑  (∑   (         )

  

)

 

                                                                            

We combine the Eq. (4.16 - 4.17) together, and get the formula   as 

           ∑  (∑   (         )

  

)
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CHAPTER 5. RESTRICTED BOLTZMANN MACHINE 

5.1 EBM and RBM 

In our previous work, we have defined the EBM for a special two layer model. Also, 

the RBM is a model with the same structure with it. What we want to do is to apply 

the EBM into the RBM. 

Typically, we can use a quadratic function to represent a general two-layer model as 

                                                              

Based on the structure of RBM, we can cancel out some useless coefficient and 

rename some the coefficient in Eq. (5.1). Moreover, we have to change data format 

into matrix for future calculation, change the function name into the energy function. 

Then the new representation become 

                                                                    

In the Eq. (5.2), we can see that b and c is the biases of the visible and hidden 

variables, both of them are column vector. W is the weights in between the visible and 

hidden variables. 

In order to more suitable the two-layer energy-based model, we have to change the 

equation in the format of Eq. (4.11). The representation become 

                                                                           

         ∑           

 

   

                                

We compare the Eq. (4.11) and Eq. (5.3), found out that the function          

and                     . We change the x into v, y into h. Then substitute them 

into the Eq. (4.18), get the new formula of free energy   as 
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5.1.1 Conditional Probability 

The definition of conditional probability is about calculating the probability under 

some given condition. We can inspect of this concept, to calculate the probability of 

hidden units under the given observed variables. 

In order to do that, we have first to define the probability distribution for the RBM. As 

we make use of the EBM, we can also make use of definition of the probability 

distribution in Eq. (3.1). Now we can define the conditional probability of hidden 

variables given by observed variables equal to  
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The h is in a vector format, so that we can separate it into n elements to have a further 

simplification as 
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Also, we can reverse the operation, a similar derivation for P(v|h) is using the same 

conditional probability mechanism as 
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5.1.2 RBM with Binary Units 

Assume that our RBM is in binary nodes, which all the visible and hidden units are 

only have two states, one or zero. In addition, we can continue to extend our Eq. (5.6) 

and Eq. (5.7), where    {   } and    {   }. Then, we will have the formula 
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Also, the Eq. (5.4) can also take the advantage of the binary units, get the simpler 

representation in make use of     {   } as 
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5.1.3 Gibbs Sampling 

We have discussed a lot time about the hidden variables or the hidden units, but we do 

not talk about how we can get it. In fact, what we have to do is to sample the hidden 

units. 
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Assume the samples of p(x) can be obtained by running a Markov chain to 

convergence, we can use the Gibbs sampling [12] as the transition operator. 

Gibbs sample of the joint of N random variables               can be done by a 

sequence of N sampling sub-step of the form          |    , where     contains the 

N-1 other random variable in sample S excluding   . 

For the RBM, the sample of 

set of variables includes the 

observed variables and hidden 

variables. However, there is 

no direct relation in between 

different unit of the observed 

variables, also the hidden 

variables. We can see the 

whole observed or hidden 

variables as a sampling block. 

Make use of the Gibbs sampling, use the hidden variables to sample the observed 

variables, also can use the observed variables to sample the hidden variables. 

According to Eq. (5.9 - 5.10), the Markov chain [13] (see Figure 3) can be written in 

the representation as  

      (    |    )      (       )                                        

      (    |      )      (          )                                  

When t is large enough, our samples (         ) can be very close to the accurate 

samples of p(v, h). 

5.1.4 Contrastive Divergence 

In practical, the update of variables has to pass through the whole Markov chain is 

inefficiency. The other approach is to make use of the contrastive divergence (CD) 

[14], it is a method to do the sampling only in a number of steps, but not go through 

the whole chain. We denote one step of Gibbs sampling in the RBM is to sample both 

the observed variables and hidden variables one times. We make use of the CD-k [15] 

to represent the k-steps of Gibbs sampling. There is a lot of experiments show that the 

CD-k can have an acceptable result even when k equal to 1. 

5.1.5 Stochastic Gradient Descent in RBM 

As we discuss before in CHAPTER 4, in order to optimize the EBM, we have to make 

use of the stochastic gradient descent method. We can apply the same technique in the 

RBM also. The update rule in Eq. (4.10) can only use the Gibbs sampling in CD-k to 

represent the expectations as 
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Figure 3: Markov Chain of Gibbs Sampling 
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5.2 Update RBM 

According to RBM, there are three important variables in between it, which is the W, 

b and c, which all of them are the weights and biases for the node. We can make use 

of the Eq. (5.10), to calculate the partial derivatives of Free energy for each parameter  
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Combining the Eq. (5.13 - 5.16), we can get the log-likelihood gradients for the RBM 

as 
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CHAPTER 6. Experiment 

6.1 Description 

Our experiment is focus on the Bar-

and-Stripe Benchmark (BAS) (see 

Figure 4), each of them has     

units. Each of the benchmark will 

randomly choose a direction in 

horizontal or vertical. Then we will 

randomly generate a pattern for n 

values in binary. Assign the pattern 

into the whole horizontal or vertical 

lines in the benchmark. 

Therefore, there are total        different BAS benchmarks. We would like to 

use the RBM to learning probability for different benchmarks. 

6.2 Unsupervised Learning 

What we are doing is to train the RBM in the unsupervised learning method. We first 

generate sixty thousands of samples in Bar-and-Stripe Benchmark, and use the data to 

do ten epoch of training. The follow (see Table 1) is our result. 

Table 1: Experiment Result for Different Dimension  

Dimension Num. Cases Hidden Units Training 

Time(ms) 

Accuracy 

3x3 14 100  7489 99.99% ±0.01% 

4x4 30 100  9264 99.99% ±0.01% 

5x5 62 100 10981 99.99% ±0.01% 

6x6 126 100 13387 99.10% ±0.90% 

7x7 254 100 16038 95.64% ±3.31% 

8x8 510 100 20965 63.00% ±5.72% 

9x9 1022 100 24093 26.05% ±4.18% 

10x10 2046 100 26823  6.83%  ±2.01% 

Figure 4: Bar-and-Stripe Benchmark 
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From this table, we can see that when the dimension become larger, the number of 

cases will have an exponentially increase. The accuracy have an exponentially 

decrease (see Figure 5), and the training time increase smoothly (see Figure 6) 

according to the data length. 

 

 

We can see that the accuracy decrease so fast against to the number of cases, but not 

the dimension. So that what we decide to do is to increase number of hidden unit, to 

increase the capability of learning of our model. We get the result is shown on (see 

Table 2). 

Table 2: Experiment Result for Different Hidden Units 

Dimension Num. Cases Hidden Units Training 

Time(ms) 

Accuracy 

10x10 2046  100  26823  6.83%  ±2.01% 

10x10 2046  200  52859 55.79% ±4.34% 

10x10 2046  300  79652 76.56% ±3.50% 

10x10 2046  400 103688 87.68% ±3.19% 

10x10 2046  500 130488 95.61% ±1.39% 

10x10 2046  600 153691 97.07% ±1.22% 

10x10 2046  700 179362 98.11% ±0.90% 

10x10 2046  800 205010 93.60% ±1.10% 

10x10 2046  900 232951 90.92% ±1.76% 

Figure 6: Time Complexity for 

Different Dimension 
Figure 5: Accuracy Decrease when 

Dimension Increase 
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10x10 2046 1000 254856 87.12% ±2.53% 

10x10 2046 2000 516659 95.69% ±1.38% 

From our experiment, we can find out that when the number of hidden units increases, 

the running time will also have the linear increase (see Figure 8). The accuracy will 

also increase until a certain point (see Figure 7), after that will decrease a little bit. 

What we consider is that, when the number of hidden units increase, the uncertainty 

factor will also increase correspondingly, which will cause this kind of problem. How 

to choose the number of hidden units is still a big problem in our point of view. 

 

 

6.3 Distribute Environment 

6.3.1 Introduction 

Hadoop [16] is an open-source software framework for storage and large-scale 

processing of data-sets on clusters of commodity hardware. Hadoop is an Apache top-

level project being built and used by a global community of contributors and users. 

And which is licensed under the Apache License 2.0. 

6.3.2 File System 

The Hadoop distributed file system (HDFS) [17] is a distributed, scalable, and 

portable file-system written in Java for the Hadoop framework. The whole file system 

is a cluster of datanodes form the HDFS cluster (see Figure 9).  

Figure 7: The Peak of Accuracy During 

The Number of Hidden Units Increase 
Figure 8: Training Time Linear Increase 

for Increase Hidden Units 

Figure 9: Nodes of The Cluster  
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And also there is some important information about the File System (see Figure 10) 

 

 

6.3.3 Map Reduce Framework 

Map Reduce is a framework [18] (see Figure 11) that can help us to handle the big 

data. First this framework will separate the input stream into different splits, then each 

split will assign to one of the datanode to do the map process. When the map process 

has finished, it will have some key value pair collect for the next step. During the 

collecting, the framework will help us to sort the data from all of the data nodes and 

according by the key, and the merge all the values belong to this key into a vector. 

The next is the reduce process, it will accept the key and value vector merged before. 

The reduce will also collect the data and which is the final output for this framework. 

 

 

 

 

 

 

Figure 10: Information of HDFS 

Figure 11: Map Reduce Framework 
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6.3.4 Distribute Algorithm 

What we found out that the most time consuming part is that it has to calculate a lot of 

matrix multiplication and sigmoid function during the update process of RBM, but it 

only use very few of time to update parameters. Therefore, we decide to put the 

matrix multiplication and the sigmoid calculation in parallel. The MR framework is a 

good tool for conducting the parallel compilation, and also the data collection.  

The table (see Table 3) is the time costs during the MR training process. We can see 

that the CUP time increase when the number of splits increases. But at the same time 

the training time is decrease. It is because of that the CPU time is summary of all 

different splits, and most of the splits can run at the same time. In our cluster, there 

are around twenty MR processes are running at the same time.  

Table 3: Time Consuming in Different MR Process 

Splits Map (ms) Reduce (ms) GC (ms) CPU (ms) Training 

Time (ms) 

1 42730 

±12558 

2253  

±158 

451  

±70 

46670 

±13070 

408683 

5 55922 

±4569 

2216  

±79 

744  

±128 

48175 

±3525 

207543 

10 83853 

±12098 

3689  

±1478 

1300  

±344 

56475 

±3885 

167552 

20 142566 

±5193 

5469  

±143 

2706  

±102 

72760 

±3540 

184984 

Without 

MR 

-- -- -- -- 206251 

From this table, we can find out a problem that more splits would not have more 

benefit in the MR framework. As it has to use more time to do the communication in 

between different nodes, the MR initialize time is inefficient, etc. Therefore, how to 

balance the value of number of splits also one challenge remaining. 

But we can see that, when the number of data increases, there is a trend that the MR 

framework will become more efficient, since we have not used the whole calculation 

power in each split. 

6.4 Results 

We choose the 5x5 cases during the demonstration, since it is easy to understand and 

also can display more clearly. During the training process, we are using the 

supervised learning combined with the unsupervised learning. The most different of 

them is the label will involve during the training process or not, and what we do is to 
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see the label as part of our data. The whole training process is in an unsupervised 

learning. 

6.4.1 Interface 

 

Figure 12: Interface of Our Testing Tools 

In our interface (see Figure 12), we can see there are two part. There are twelve 

blocks contained in left hand side, each block has a label on top of it. The right hind 

side has some slider and a button there.  

The block in the upper left corner is the data we want to pass into the model we 

trained. Beside the label, there is a bracket. Inside the bracket is the real label for the 

benchmark.  From left to right, and up to down direction is in different Gibbs steps in 

the Gibbs sampling. 

The first slider is to set how many random line of the benchmark will be hide. The 

second slider is to set will we given the real label in the sampling process, we define 

“1” to represent the label is given. The third slider is to set the disabling data. We use 

“0” as using the middle value of the data to replace it. When we use “1”, the disabling 

data will be replaced by some random variables. The button test is to take another 

testing. 

6.4.2 Classification 

Classification problem [19] usually is a supervised learning problem, and we have 

transformed it into an unsupervised problem. We put the label into the data before the 

training process, which can help us to train the data and label simultaneously. 

Our setting is very simple, since we want to classify which label this benchmark 

belong to. We just need to hide the label in the beginning of the sampling process. 
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Figure 13: Experiment in Classification Problem 

From the result (see Figure 13), we can see, since we only have 62 different cases, so 

we first assign a label with 63 to it, and the true label is inside the parentheses, and 

finally we can see it can learn the label very well. 

From this experimental result, we can conclude that the RBM have the capability of 

handle the classification problem, and the classification accuracy is also acceptable. 

6.4.3 Image Restoration 

Image Restoration problem is that a part of the image is lost, which may because of 

transmission or compression. We know what the object is, such as we know the label. 

We can set there are part of the benchmark is lost, we try to use the model to restore 

the original benchmark. 

 

Figure 14: Experiment in Image Restoration 

From the result (see Figure 14), we can see that the missing part can be almost 

implanted in the first step of the sample. 
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In this experiment, we can see that the RBM has the capability to learn the probability 

from some unknown data [20]. The image restoration is successful at all. 

6.4.4 Clustering 

Some time we may get some data that we haven’t seen before, and we want to know 

what it most likely belongs to. According to some predesigned knowledge, such as the 

model what we trained, to clustering [21] it into one group of data. In addition, we use 

our benchmark as the cluster centre, and the label as the cluster group id. 

We can use our testing tool to make the whole block become almost mess, just remain 

a little pattern belong to the BAS benchmark. We set there are four line of data is in a 

random data, only remain one line contain the pattern of BAS benchmark. At the 

same time, we disable the label in the beginning of the sampling process. 

 

Figure 15: Experiment in Clustering Problem 

From the result (see Figure 15), we firstly have to find out where is the pattern of 

BAS benchmark. We notice that the fourth row is what we want to find.  

The sample is become clearer for more Gibbs steps, which can learn the cluster group 

number as our expectation for this sample. 

In this experiment, we can see that the mess data become closer to one of our cluster 

centre and cluster group in the Gibbs sampling. Finally we find out that data and label 

is same as we generated. We think the RBM is good for clustering. 

However, we mess up almost all the data, the samples which generated from the 

model may not be the same as what our expectation. In the clustering process may 

directly go to another cluster different from our expectation is acceptable. 
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CHAPTER 7. Conclusion  

In our report, we discuss the process of how to train the RBM, the performance of 

RBM in different settings, and the distributed implementation.  

Also, we meet some problem during our research, like how to choose the number of 

hidden variables for the RBM, how to choose the number of splits in the distributed 

environment. 

During the experiments, we found out the RBM can learn both vertical and horizontal 

features at the same time (see Figure 16). Luckily, we find out the sample will most 

likely converge to our expectation when we do more step of the sampling (see Figure 

17).  

  

Figure 16: Learning both Vertical and Horizontal Features 

 

Figure 17: Automatically Correct in Gibbs Sampling 

When the dimension of the data increases, we have to use more hidden units to 

guarantee that the accuracy is acceptable in the sampling. There is a linear increase in 

training time when the dimension of the data increases linearly, also a linear increase 

with respect to the number of hidden variables. Combining these two factors, we can 

see the trend that the training time will have a significant increase.  

Distributed algorithm and parallel calculation obviously can help us to improve the 

performance in training the model. How to improve the distributed algorithm, 

increase the utilization of all the nodes inside the cluster and decrease the training 

time are still big challenges for us. 
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CHAPTER 9. Appendix 

Cluster: Apache™ Hadoop®  

Version: Hadoop 0.23.9 

Num. Namenode: 1 

Num. Datanode: 3 

Operating System: CentOS release 6.4 (Final) 

Kernel: Linux Version 2.6.32-358.el6.x86_64 

Java: Java™ SE Runtime Environment (build 1.7.0_40-b43) 

 

Computers: HP Compaq Elite 8300 MT PC 

Processor: Intel®  Core™ i7-3770 CPU @ 3.40GHz 

RAM: 8 GB 

NIC: Intel®  PRO/1000 Network Connection 

 

Devices: NETGEAR N600 Wireless Dual Band Gigabit Router WNDR3700v2 

Num. port: 4 

NIC: Gigabit Ethernet 


