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ABSTRACT 

 The purpose of this project is to present a warping and distortional analysis of 

thin-walled box beams. In this project, the behavior of thin-walled box beams in 

rectangular shape under different loadings and boundary conditions has been studied. The 

torsional warping and distortion deformations were predicted using pre-assigned 

functions which formed a stiffness matrix equation to solve the one-dimensional problem 

using a standard two-node displacement-based C0-continous finite element approach. A 

computer program was developed using Fortran Language to carry out the numerical 

analysis and which was compared with the results using existing Finite Element Method 

Software – Abaqus shell models. The result was also compared with the work by other 

researchers to check its accuracy and validity. 
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Chapter 1  Introduction 

 Thin-walled box beams are currently widely used in bridges due to the high 

torsional rigidities and space-saving properties with overhead bridges. Various types of box 

beams such as straight box girders, curved box girders, box girders with cantilever slabs 

and pre-stressed concrete beams are used for light rails deck, bridges. However, the 

deformation behavior of the cross-section is rather complex, which it is very difficult to 

accurately predict their behaviors with elementary beam theory.  

In this project, the static coupled deformations as torsion, warping and distortion of 

thin-walled closed beams with rectangular cross-sections were analyzed using one-

dimensional beam theory proposed. A two-node C0 finite element computer program was 

developed for numerical analysis. Finite Element Models using Abaqus software were also 

used to verify the numerical solution of the proposed theory. 
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1.1 Background 

Rectangular beams have been the most popular structural elements in most of the 

modern superstructure. Nowadays, thin-walled beams or girders are widely used in bridges 

or overhead structures due to its torsional rigidity and cost-saving properties. Thin-walled 

beams refer to beams with the thickness of the wall (contour) is significantly thinner than 

the length (width) of the wall (contour), the top flange of thin-walled beams are also under 

various type of loading and diaphragms can be used to strengthen the rigidity of the cross-

section especially in long-span structure. The usual design approach for rectangular beams 

was using the elementary beam theory, in which the cross-section of the beams do not 

deform, resulting only in longitudinal bending and every cross-section of the beam remains 

plane. 

 The self-weight of bridge structures is a major concern for the engineers as the self-

weight of the structure dominates the loading compared to live loads. Therefore, an 

effective and efficient design always aim on decreasing the self-weight while assuring the 

rigidity as well as the overall stability, especially for long-span bridges. The Sutong Bridge 

in China shown in Fig.1.1 was constructed using precast segmental method with single-cell 

box girder, consists of 30m, 50m and 70m span. The Matagorda Segmental Bridge shown 

in Fig1.2. is also a pre-cast segmental bridge structure with deck width of 14m, while 

spanning in 54 and 108m. 

 Typical thin-walled beams are usually in rectangular or trapezoidal shapes. The 

elementary beam theory would not be used in designing thin-walled structures as the cross-

section deformation cannot be neglected, which is significant to the structural element, 

when subjected to unsymmetrical loading.  Major considerations of deformation of thin-
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walled beams are, most of the case, shear-lag effect (for girders), distortion and warping 

deformation. In this project, the coupled deformation of distortion and torsional warping of 

the cross-section of rectangular beams under torsional-equivalent loadings were analyzed.  

 
Fig. 1.1 - Sutong Precast Segmental Bridge, China 

 
Fig. 1.2 -  Matagorda Precast Segmental Bridge, Texas 
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1.2 Introduction to Warping and Distortion Deformation 

The usual structural behavior under eccentric loading of box beams (girders) is 

illustrated as Fig.1.2.1. A line load or concentrated load acting on the tip of the cross-section 

results in bending, torsion and distortion stress. The bending deflection can be 

approximated using the elementary beam theory if the shear lag effect is not significant, 

however, the torsional and distortional deformation cannot be accurately calculated using 

the classical beam theory as the cross-section no longer remains plane. 

 
Fig. 1.2.1 - Decomposing an eccentric loading 

 

Fig. 1.2.2 - Torsion Warping Deformation       Fig. 1.2.3 - Distortion Deformation  
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 The warping deformation being studied in this project is only due to torsion, the 

distortional warping is not considered. As shown in Fig.1.2.2, the four corners deform 

axially in compression and tension, resulting a non-planar cross-section. Many researches 

had been made on the warping function to predict the warping deformation which is a 

linear function of the dimensions of the cross-section. The warping behavior is more 

significant for thin-walled open sections as H or I shape beams. Examples of warping 

function of a cross-section are shown in Fig.1.2.4, the warping function in 1.2.4(c) has a 

balanced effect of four corners and zero value at the middle of each contour, resulting 

maximum value at each corner and the function varies linearly along the contour. In this 

report, only the warping deformation of the corners are discussed as it is the most critical 

in the cross-section.

 

Fig. 1.2.4 - Warping function of a rectangular cross-section 

 The distortion function, however, is more complex as it is not linear function 

along the contour. Kim & Kim (1999) proposed a cubic distortion function to predict the 

deformation of each contour which will be verified in the report. 
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1.3 Objectives and Scope  

 Based on the limited research work on the torsional warping and distortion behavior 

of thin-walled box beams mentioned in the introduction, the objectives and scopes which 

were established for this report as following: 

• To study the deformation behavior of thin-walled box beams under torsional 

loading 

• To understand the pre-assigned deformation functions and constants governing the 

deformation behavior of thin-walled box beams 

• To understand the derivation of the governing equations based on the principle of 

minimum potential energy 

• To develop a one-dimensional finite-element computer program to solve the 

problem of thin-walled box beams 

• To validate the developed computer program and verify the solution to the research 

works by previous researchers  

• To establish valid finite element models of thin-walled box beams using existing 

ABAQUS Finite Element Software and verify the proposed method 

• To compare the numerical solution with the finite element model analysis and 

discuss the differences 
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Chapter 2 Literature Review 

In 1961, Vlasov (1961) offered a comprehensive theoretical analysis of thin-

walled structures. Vlasov (1961) showed that the distortional effects could be described 

using a fourth order ODE in a displacement quantity, referred as Beam on Elastic 

Foundation. The analogy was then further developed by Wright et.al. to predict the 

warping and distortional stresses. In the analogy, the beam behavior results from in-plane 

bending of the box beam walls, while the elastic foundation effect is provided by the 

beam’s transverse bending stiffness which is the resistance to distortion. 

In 1983, Boswell and Zhang(1983) presented a finite beam element formulation 

for the static analysis and later reported related experimental results in 1985. The static 

analysis included warping, distortion and shear-lag effect of straight and curved thin-

walled box beams with varying cross-section. In the experiment, three steel models 

consisting straight single-cell cantilever, curved sing-cell cantilever and a simply-

supported twin box had been constructed. The distortional angle and twisting angle of the 

cross-section were evaluated from the observed values of displacements. The additional 

stress system arising from the torsional warping and distortion effects were also 

calculated by a one-dimensional finite element analysis using thin-walled box beam 

elements and the results were in close agreement. 

The straight single-cell cantilever problem was then analyzed by Balch and Steele 

in 1987, by a perturbation procedure. Equations of conventional thin plate theory were 

used to formulate an eigenvalue problem for effects of self-equilibrating end loads. In the 

asymptotic solutions by Balch and Steele assumptions were made that the in-plane shear 

strain was negligible and the stress distribution varies linearly along the contour. 
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However, the analysis was only restricted to closed rectangular cross sections with 

uniform thickness. 

Based on the theories mentioned above, Kim & Kim(1999) further proposed a 

cubic distortion function and the continuity condition of rotation of corners which can be 

applied to general quadrilateral cross sections. Pre-assigned functions were used to 

describe the section deformations using one-dimensional theory to analyze static and free-

vibration problems which the results were compared with the existing finite plate finite 

element solution. In this project, the work was mainly based on the method proposed by 

Kim & Kim(1999) and the results were compared with existing Finite Element Method 

computer program Abaqus models. 
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Chapter 3 Methodology 

 In this project, the work was based on the theory proposed by Kim & Kim (1999), 

who imposed the continuity condition of the rotation/moment of corners with a cubic 

distortion function. By selecting the appropriate pre-assigned functions describing the 

contour deformations as twisting, warping and distortion, a one-dimensional Finite 

Element analysis was performed using Fortran95 language. The numerical results were 

then compared to the work by Boswell & Zhang (1985) , Balch and Steele (1987), and the 

existing Finite Element Method computer program ABAQUS. 

3.1Basic Field Equations and Assumptions 

Assumptions: 

• Uniform contour thickness 𝑡𝑡 is assumed to be much smaller than the length of the 

beam; Width of flange is denoted as b; Height of web is denoted as h 

• The contour (wall) is assumed to be in-extensional, i.e.( 𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

= 0) , the tangential 

displacement is uniform across the contour length 

• A right - handed curvilinear coordinate system(n,s,z) was used in addition to the 

Cartesian Coordinate(x,y,z) in Fig.1 

• The tangential coordinate 𝑠𝑠 is measured along the contour, origin of 𝑠𝑠 varies from 

each wall, rotate in anti-clockwise direction 

• The normal coordinate 𝑛𝑛 is measured from the middle line of each contour directs 

outwards from the contour for positive value 

• The transverse shear effect of the cross-section is neglected  
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Fig. 3.1 -  Displacements of an arbitrary point on the contour of the thin-walled cross 

section 

Field equations: 

 In this project, only the measures of torsion, warping and distortion were 

considered as field variables. The three-dimensional displacements (𝑢𝑢�𝑠𝑠,𝑢𝑢�𝑛𝑛,𝑢𝑢�𝑧𝑧  ) of a point 

on the cross-section were expressed as shell displacements (𝑢𝑢𝑠𝑠,𝑢𝑢𝑛𝑛,𝑢𝑢𝑧𝑧) of a point on the 

contour (Fig.3.1):  

• normal 𝑢𝑢𝑛𝑛(𝑠𝑠, 𝑧𝑧) , which directs outward from the contour 

• tangential 𝑢𝑢𝑠𝑠(𝑠𝑠, 𝑧𝑧), in the direction of anti-clockwise rotation of each contour  

• axial 𝑢𝑢𝑧𝑧(𝑠𝑠, 𝑧𝑧), positive in the z-axis 

𝑢𝑢𝑠𝑠(𝑠𝑠, 𝑧𝑧) =  𝜓𝜓𝑠𝑠𝜃𝜃(𝑠𝑠) ∙ 𝜃𝜃(𝑧𝑧) +  𝜓𝜓𝑠𝑠𝑈𝑈(𝑠𝑠) ∙ 𝑈𝑈(𝑧𝑧) + 𝜓𝜓𝑠𝑠
𝜒𝜒(𝑠𝑠) ∙ 𝜒𝜒(𝑧𝑧)         (1𝑎𝑎) 

𝑢𝑢𝑛𝑛(𝑠𝑠, 𝑧𝑧) =  𝜓𝜓𝑛𝑛𝜃𝜃(𝑠𝑠) ∙ 𝜃𝜃(𝑧𝑧) +  𝜓𝜓𝑛𝑛𝑈𝑈(𝑠𝑠) ∙ 𝑈𝑈(𝑧𝑧) + 𝜓𝜓𝑛𝑛
𝜒𝜒(𝑠𝑠) ∙ 𝜒𝜒(𝑧𝑧)          (1𝑏𝑏) 

𝑢𝑢𝑧𝑧(𝑠𝑠, 𝑧𝑧) =  𝜓𝜓𝑧𝑧𝜃𝜃(𝑠𝑠) ∙ 𝜃𝜃(𝑧𝑧) + 𝜓𝜓𝑧𝑧𝑈𝑈(𝑠𝑠) ∙ 𝑈𝑈(𝑧𝑧) + 𝜓𝜓𝑧𝑧
𝜒𝜒(𝑠𝑠) ∙ 𝜒𝜒(𝑧𝑧)         (1𝑐𝑐) 
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The  𝜓𝜓 
 (𝑠𝑠)  in Eq.(1) denote the preassigned functions of s describing the contour 

deformations in the n-s plane per unit value of 𝑈𝑈,𝜃𝜃 and 𝜒𝜒 due to warping, torsion and 

distortion respectively. The major issue was to find the correct form of  𝜓𝜓 
 (𝑠𝑠), particular 

for the distortion function 𝜓𝜓 
 𝜒𝜒(𝑠𝑠). 

Torsional deformation (Twisting) 

 To consider the torsional deformation (twisting) 𝜃𝜃(𝑧𝑧) of the cross-section about 

the positive z-axis, the axial deformation (𝜓𝜓𝑧𝑧𝜃𝜃) can be considered as 0, one can identify 

as : 

ww𝜓𝜓𝑠𝑠𝜃𝜃(𝑠𝑠) = 𝑟𝑟(𝑠𝑠) 

𝜓𝜓𝑛𝑛𝜃𝜃(𝑠𝑠) =  −ℓ𝑖𝑖 + 𝑠𝑠    

    𝜓𝜓𝑧𝑧𝜃𝜃(𝑠𝑠) = 0                                                      (2)   

 *Where r(s) is the distance normal to the contour from the shear center O, 

 *And ℓ𝑖𝑖 is the distance from the origin of the s coordinate on the 𝑖𝑖𝑡𝑡ℎ  wall to the point 𝑁𝑁𝑖𝑖 

Torsional warping deformation 

To consider warping deformation 𝑈𝑈(𝑧𝑧) of the cross-section, only axial 

displacement  𝑢𝑢𝑧𝑧(𝑠𝑠, 𝑧𝑧) is significant, one can identify as : 

𝜓𝜓𝑠𝑠𝑈𝑈(𝑠𝑠) = 0 

𝜓𝜓𝑛𝑛𝑈𝑈(𝑠𝑠) = 0 

𝜓𝜓𝑧𝑧𝑈𝑈(𝑠𝑠) ≠ 0     (3) 
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Distortional deformation 

To consider the in-plane distortional deformation 𝜒𝜒(𝑧𝑧) of the cross-section, the 

axial displacement is considered to be zero, one then can also identify as: 

𝜓𝜓𝑠𝑠
𝜒𝜒(𝑠𝑠)  ≠ 0 

𝜓𝜓𝑛𝑛
𝜒𝜒(𝑠𝑠)  ≠ 0 

𝜓𝜓𝑧𝑧
𝜒𝜒(𝑠𝑠) = 0                  (4) 

Three-dimensional displacements:  𝑢𝑢�𝑛𝑛, 𝑢𝑢�𝑠𝑠 and 𝑢𝑢�𝑧𝑧 of any point in a wall can then 

be calculated with uniform wall thickness t, thus 

𝑢𝑢�𝑛𝑛(𝑛𝑛, 𝑠𝑠, 𝑧𝑧) ≈  𝑢𝑢𝑛𝑛(𝑠𝑠, 𝑧𝑧) =  𝜓𝜓𝑛𝑛𝜃𝜃(𝑠𝑠) ∙ 𝜃𝜃(𝑧𝑧) + 𝜓𝜓𝑛𝑛
𝜒𝜒(𝑠𝑠) ∙ 𝜒𝜒(𝑧𝑧)          (5𝑎𝑎)  

𝑢𝑢�𝑠𝑠(𝑛𝑛, 𝑠𝑠, 𝑧𝑧)  ≈  𝑢𝑢𝑠𝑠(𝑠𝑠, 𝑧𝑧) + 𝑛𝑛 
𝜕𝜕 𝑢𝑢𝑛𝑛(𝑠𝑠, 𝑧𝑧)

𝜕𝜕𝜕𝜕
 

      = 𝜓𝜓𝑠𝑠𝜃𝜃(𝑠𝑠) ∙ 𝜃𝜃(𝑧𝑧) + 𝜓𝜓𝑠𝑠
𝜒𝜒(𝑠𝑠) ∙ 𝜒𝜒(𝑧𝑧) +  𝜕𝜕𝜓𝜓𝑛𝑛

𝜒𝜒(𝑠𝑠)
𝜕𝜕𝜕𝜕

∙ 𝜒𝜒(𝑧𝑧)    (5b)   

𝑢𝑢�𝑧𝑧(𝑛𝑛, 𝑠𝑠, 𝑧𝑧) ≈ 𝑢𝑢𝑧𝑧(𝑠𝑠, 𝑧𝑧) =  𝜓𝜓𝑧𝑧𝑈𝑈(𝑠𝑠) ∙ 𝑈𝑈(𝑧𝑧)                                         (5𝑐𝑐) 

Eq.(5)  are then used to calculate the three-dimensional strain components:  

𝜖𝜖𝑧𝑧𝑧𝑧 =  
𝜕𝜕𝑢𝑢�𝑧𝑧
𝜕𝜕𝜕𝜕

=  𝜓𝜓𝑧𝑧𝑈𝑈(𝑠𝑠) ∙
𝑑𝑑 𝑈𝑈(𝑧𝑧)
𝑑𝑑𝑑𝑑

  (6𝑎𝑎) 

                                                         𝜖𝜖𝑧𝑧𝑧𝑧 =  
1
2

 �
𝜕𝜕𝑢𝑢�𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢�𝑠𝑠
𝜕𝜕𝜕𝜕

�  

≈  
1
2

 � 
𝑑𝑑 𝜓𝜓𝑧𝑧𝑈𝑈(𝑠𝑠)
𝑑𝑑𝑑𝑑

∙ 𝑈𝑈(𝑧𝑧) + 𝜓𝜓𝑠𝑠𝜃𝜃(𝑠𝑠) ∙  
𝑑𝑑 𝜃𝜃(𝑧𝑧)
𝑑𝑑𝑑𝑑

+  𝜓𝜓𝑠𝑠
𝜒𝜒(𝑠𝑠) ∙

𝑑𝑑 𝜒𝜒(𝑧𝑧)  
𝑑𝑑𝑑𝑑

 �   (6𝑏𝑏) 

𝜖𝜖𝑠𝑠𝑠𝑠 =
𝜕𝜕𝑢𝑢�𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝑢𝑢𝑛𝑛
𝜕𝜕𝑠𝑠2

= 𝑛𝑛
𝜕𝜕2𝜓𝜓𝑛𝑛

𝜒𝜒(𝑠𝑠)
𝜕𝜕𝑠𝑠2

 ∙ 𝜒𝜒(𝑧𝑧)  (6𝑐𝑐)  
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Note:  Eq.(6c) is obtained with the assumption 𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

= 0 

Other Strains components are negligible compared to those components. 

Three-dimensional Stress components: 

𝜎𝜎𝑧𝑧𝑧𝑧 = 𝐸𝐸1 (𝜖𝜖𝑧𝑧𝑧𝑧 +  𝜐𝜐𝜖𝜖𝑠𝑠𝑠𝑠)   

𝜎𝜎𝑠𝑠𝑠𝑠 = 𝐸𝐸1 (𝜖𝜖𝑠𝑠𝑠𝑠 +  𝜐𝜐𝜖𝜖𝑧𝑧𝑧𝑧) 

𝜎𝜎𝑧𝑧𝑧𝑧 = 2𝐺𝐺𝜖𝜖𝑧𝑧𝑧𝑧                      (7) 

Where 𝐸𝐸1 ≡  𝐸𝐸
1−𝜐𝜐2

 and E, G are Young’s and Shear Moduli, respectively; 𝜐𝜐 is the Poisson’s ratio 

 

3.2 Warping and Distortion Functions 

The warping (𝜓𝜓𝑧𝑧𝑈𝑈) and distortion functions (𝜓𝜓𝑠𝑠𝑠𝑠
𝜒𝜒 ,𝜓𝜓𝑛𝑛𝑛𝑛

𝜒𝜒 ) were approximated by 

imposing the condition that the virtual work done by warping and distortion stresses 

vanish under rigid-body virtual displacement fields. 

Virtual translations and rotations are denoted as : 

 𝛿𝛿𝑈𝑈𝑥𝑥 , 𝛿𝛿𝑈𝑈𝑦𝑦, 𝛿𝛿𝑈𝑈𝑧𝑧 –  Virtual translation in x, y and z directions, respectively 

 𝛿𝛿Θ𝑥𝑥, 𝛿𝛿Θ𝑦𝑦, 𝛿𝛿Θ𝑧𝑧 − Virtual Rotation in x, y and z directions, respectively 
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Warping Function  𝜓𝜓𝑧𝑧𝑈𝑈:  

Non-zero stress components by warping given by strains in Eq. (6) and Eq. (7):  

𝜎𝜎𝑧𝑧𝑧𝑧𝑈𝑈 (𝑧𝑧) = 𝐸𝐸1 ∙ 𝜓𝜓𝑧𝑧𝑈𝑈(𝑠𝑠) 𝑑𝑑 𝑈𝑈(𝑧𝑧)
𝑑𝑑𝑑𝑑

  ,    𝜎𝜎𝑠𝑠𝑠𝑠𝑈𝑈 (𝑧𝑧) = 𝐺𝐺 ∙ 𝑑𝑑 𝜓𝜓𝑧𝑧𝑈𝑈

𝑑𝑑𝑑𝑑
∙ 𝑈𝑈(𝑧𝑧)     (9) 

When warping deformation is being considered, it is generally resulting from 

flexural and torsional deformations, which means that the virtual work done due to 

𝛿𝛿U𝑥𝑥, 𝛿𝛿U𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿Θ𝑧𝑧 does not generally vanish, then there will be no condition to find the 

function 𝜓𝜓𝑧𝑧𝑈𝑈 from Eq.(10) under this consideration. 

𝛿𝛿𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  �  �𝑟𝑟(𝑠𝑠) ∙    𝜎𝜎𝑠𝑠𝑠𝑠𝑈𝑈 (𝑧𝑧)𝛿𝛿Θ𝑧𝑧 −    𝜎𝜎𝑠𝑠𝑠𝑠𝑈𝑈 (𝑧𝑧) ∙ 𝛿𝛿U𝑥𝑥 +    𝜎𝜎𝑠𝑠𝑠𝑠𝑈𝑈 (𝑧𝑧) ∙ 𝛿𝛿U𝑦𝑦 �𝑑𝑑𝑑𝑑  ≠ 0  (10)
 

𝐴𝐴

 

However, no virtual work should be done by the warping stress due to the rigid-

body motions associated with axial extension (𝛿𝛿𝑈𝑈𝑧𝑧) and bending motions �𝑦𝑦(𝑠𝑠) ∙ 𝛿𝛿Θ𝑥𝑥 ,

𝑥𝑥(𝑠𝑠) ∙ 𝛿𝛿Θ𝑦𝑦�:  

𝛿𝛿𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  ∫ 𝜎𝜎𝑧𝑧𝑧𝑧𝑈𝑈 (𝑧𝑧) �𝛿𝛿𝑈𝑈𝑧𝑧 − 𝑦𝑦(𝑠𝑠) ∙ 𝛿𝛿Θ𝑥𝑥 + 𝑥𝑥(𝑠𝑠) ∙ 𝛿𝛿Θ𝑦𝑦 �𝑑𝑑𝑑𝑑 = 0  
𝐴𝐴 (11) 

Each of the terms in Eq.(11) should be zero in any case: 

∫ 𝜓𝜓𝑧𝑧𝑈𝑈  𝑑𝑑𝑑𝑑 = 0      
𝐴𝐴      (12a) 

∫ 𝑦𝑦(𝑠𝑠) ∙ 𝜓𝜓𝑧𝑧𝑈𝑈  𝑑𝑑𝑑𝑑 = 0 
𝐴𝐴        (12b) 

∫ 𝑥𝑥(𝑠𝑠) ∙ 𝜓𝜓𝑧𝑧𝑈𝑈  𝑑𝑑𝑑𝑑 = 0 
𝐴𝐴       (12c) 
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The warping function using the Saint Venant Torsion theory that the shear strain 

due to warping is negligible compared to the Saint Venant shear strain. 

The warping function is chosen as : 

𝜓𝜓𝑧𝑧𝑈𝑈(𝑠𝑠) =  ∫ (𝑟𝑟 − 𝑟𝑟𝑛𝑛)𝑑𝑑𝑑𝑑    𝑠𝑠
0        (13) 

Which     𝑟𝑟𝑛𝑛 = 2𝐴𝐴1/∮𝑑𝑑𝑑𝑑       (14) 

,where 𝐴𝐴1 and ∮𝑑𝑑𝑑𝑑 are the area enclosed by and the total length of the contour respectively. 

 

Fig. 3.2.1 - Warping function of a rectangular cross-section 

The warping function of the cross-section is then plotted as shown in Fig.3.2.1 

which is a linear function depends on the s-coordinate, the middle point of each wall has a 

zero value and maximum value at the corners. 
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Distortion function 𝜓𝜓𝑠𝑠𝑠𝑠
𝜒𝜒 ,𝜓𝜓𝑛𝑛𝑛𝑛

𝜒𝜒  

The distortion function𝑠𝑠 𝜓𝜓𝑠𝑠𝑠𝑠
𝜒𝜒 ,𝜓𝜓𝑛𝑛𝑛𝑛

𝜒𝜒  proposed by Kim & Kim (1999) is presented in 

this section and validated in the subsequent section. In the assumption, each wall is 

in-extensional, i.e.( 𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

= 0), therefore rigid body deformation of each wall in the 

plane of the cross-section is also assumed. 

Cross-section displacements are denoted as : 

 𝜓𝜓�𝑠𝑠𝑠𝑠
𝜒𝜒(𝑠𝑠𝑖𝑖), 𝜓𝜓�𝑛𝑛𝑛𝑛

𝜒𝜒 (𝑠𝑠𝑖𝑖) − Tangential and normal translations of the ith wall measured 

at  the center of each wall 

 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 − Rigid-body rotation of the ith wall measured at the center of each wall 

 𝑖𝑖 = 1,2,3,4 ; 5 → 1 

 

Fig. 3.2  - Variables defining the in-plane deformation of the ith wall, associated with the 

contour distortion 

𝜓𝜓𝑠𝑠𝑠𝑠
𝜒𝜒(𝑠𝑠𝑖𝑖) = 𝜓𝜓�𝑠𝑠𝑠𝑠

𝜒𝜒        (15𝑎𝑎) 

  𝜓𝜓𝑛𝑛𝑛𝑛
𝜒𝜒 (𝑠𝑠𝑖𝑖) = 𝜓𝜓�𝑛𝑛𝑛𝑛

𝜒𝜒 − �𝑠𝑠𝑖𝑖 −
𝑏𝑏𝑖𝑖
2
�  𝜓𝜓�𝜃𝜃𝜃𝜃

𝜒𝜒   , (0 ≤ 𝑠𝑠𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖, 𝑖𝑖 = 1,2,3,4)  (15b) 

                                               𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑖𝑖  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                    
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Displacement Continuity conditions: 

𝜓𝜓𝑠𝑠𝑖𝑖
𝜒𝜒|𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 =  𝜓𝜓𝑠𝑠𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ cos(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖) −  𝜓𝜓𝑛𝑛𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖)        (16𝑎𝑎) 

     𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 =  𝜓𝜓𝑠𝑠𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ sin(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖) +  𝜓𝜓𝑛𝑛𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖)       (16𝑏𝑏)  

     (𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,3,4 ; 5 → 1) 

By applying the Virtual work principle, virtual work by the distortion stress 𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒  

due to the rigid-body virtual displacements 𝛿𝛿U𝑥𝑥, 𝛿𝛿U𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿Θ𝑧𝑧 corresponding to flexural 

and torsional deformations must vanish: 

 𝛿𝛿𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 =  ∫ �𝑟𝑟(𝑠𝑠) ∙ 𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 ∙ 𝛿𝛿Θ𝑧𝑧 + 𝜎𝜎𝑧𝑧𝑧𝑧

𝜒𝜒 ∙ 𝛿𝛿U𝑥𝑥 + 𝜎𝜎𝑧𝑧𝑧𝑧
𝜒𝜒 ∙ 𝛿𝛿U𝑦𝑦�𝑑𝑑𝑑𝑑

 
𝐴𝐴             (17) 

 

Each of the terms must be zero in any cases: 

�  �𝑟𝑟(𝑠𝑠𝑖𝑖) ∙ �𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
𝑑𝑑𝑑𝑑 = 0

4 

𝑖𝑖=1

        (18𝑎𝑎) 

�  ��𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
∙ 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖  𝑑𝑑𝑑𝑑 = 0

4 

𝑖𝑖=1

        (18𝑏𝑏) 

�  ��𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
∙ 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑖𝑖 𝑑𝑑𝑑𝑑 = 0

4 

𝑖𝑖=1

        (18𝑐𝑐) 

Normal Displacement 𝜓𝜓𝑛𝑛𝑛𝑛
𝜒𝜒 (𝑠𝑠𝑖𝑖) in Eq.(15b) is replaced by a cubic function, the 

quantities of 𝛽𝛽𝑖𝑖(𝑖𝑖) and 𝛽𝛽𝑖𝑖(𝑖𝑖+1) representing the rotations of the ith wall at the ith and (i+1)th 

corners are introduced to satisfy the rotation/moment continuity condition. 
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  𝜓𝜓𝑛𝑛𝑛𝑛
𝜒𝜒 (𝑠𝑠𝑖𝑖) =  𝐷𝐷𝑖𝑖0 +  𝐷𝐷𝑖𝑖1 ∙ 𝑠𝑠𝑖𝑖 +  𝐷𝐷𝑖𝑖2 ∙ 𝑠𝑠𝑖𝑖2 + 𝐷𝐷𝑖𝑖3 ∙ 𝑠𝑠𝑖𝑖3         (19) 

To satisfy the conditions 20a-20d: 

       𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=0

 =  𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 + 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

      (20𝑎𝑎)   

        𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 =  𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 − 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

      (20𝑏𝑏)    

       𝑑𝑑
𝑑𝑑𝑠𝑠𝑖𝑖
�𝜓𝜓𝑛𝑛𝑖𝑖

𝜒𝜒 (𝑠𝑠𝑖𝑖)� 𝑠𝑠𝑖𝑖=0 
= 𝛽𝛽𝑖𝑖(𝑖𝑖)         (20𝑐𝑐)     

                   𝑑𝑑
𝑑𝑑𝑠𝑠𝑖𝑖
�𝜓𝜓𝑛𝑛𝑖𝑖

𝜒𝜒 (𝑠𝑠𝑖𝑖)� 𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖 
= 𝛽𝛽𝑖𝑖(𝑖𝑖+1)    (20𝑑𝑑) 

 

From (20a),    𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=0

 = 𝐷𝐷𝑖𝑖0 =  𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 + 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

 

      ∴ 𝐷𝐷𝑖𝑖0 =  𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 + 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

                    (20-1)  

From  (20c),  

    𝛽𝛽𝑖𝑖(𝑖𝑖) = 𝑑𝑑
𝑑𝑑𝑠𝑠𝑖𝑖
�𝜓𝜓𝑛𝑛𝑖𝑖

𝜒𝜒 (𝑠𝑠𝑖𝑖)� 𝑠𝑠𝑖𝑖=0 
=   𝑑𝑑

𝑑𝑑𝑠𝑠𝑖𝑖
�𝜓𝜓�𝑛𝑛𝑖𝑖

𝜒𝜒 + 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖

2
�

 𝑠𝑠𝑖𝑖=0 
  

            =  𝐷𝐷𝑖𝑖1 +  2 𝐷𝐷𝑖𝑖2 ∙ 𝑠𝑠𝑖𝑖  +  3 𝐷𝐷𝑖𝑖3 ∙ 𝑠𝑠𝑖𝑖2 +
𝑑𝑑 �𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 �

𝑑𝑑𝑠𝑠𝑖𝑖
∙  𝑏𝑏𝑖𝑖
2

     

    ∴   𝐷𝐷𝑖𝑖1  =  𝛽𝛽𝑖𝑖(𝑖𝑖)                            (20-2) 

From (20d) 

        𝑑𝑑
𝑑𝑑𝑠𝑠𝑖𝑖
�𝜓𝜓𝑛𝑛𝑖𝑖

𝜒𝜒 (𝑠𝑠𝑖𝑖)� 𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖 
=  𝐷𝐷𝑖𝑖1 +  2 𝐷𝐷𝑖𝑖2 ∙ 𝑏𝑏𝑖𝑖

 +  3 𝐷𝐷𝑖𝑖3 ∙ 𝑏𝑏𝑖𝑖
2 +

𝑑𝑑 �𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 �

𝑑𝑑𝑠𝑠𝑖𝑖
∙ 𝑏𝑏𝑖𝑖
2

= 𝛽𝛽𝑖𝑖(𝑖𝑖+1)  

   𝐷𝐷𝑖𝑖2 =  𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝐷𝐷𝑖𝑖1−3 𝐷𝐷𝑖𝑖3∙𝑏𝑏𝑖𝑖2

2𝑏𝑏𝑖𝑖
= 𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝛽𝛽𝑖𝑖(𝑖𝑖)  −3 𝐷𝐷𝑖𝑖3∙𝑏𝑏𝑖𝑖2

2𝑏𝑏𝑖𝑖
            (20-3) 
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From (20a-d) 

 𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 =  𝜓𝜓𝑛𝑛𝑖𝑖

𝜒𝜒 |𝑠𝑠𝑖𝑖=0
 − 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

=  𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 + 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖

2
   

Where  𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=0

 =  𝐷𝐷𝑖𝑖0 , 

And       𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 =  𝐷𝐷𝑖𝑖0 +  𝐷𝐷𝑖𝑖1 ∙ 𝑏𝑏𝑖𝑖 +  𝐷𝐷𝑖𝑖2 ∙ 𝑏𝑏𝑖𝑖
2 +  𝐷𝐷𝑖𝑖3 ∙ 𝑏𝑏𝑖𝑖

3 

Then   𝐷𝐷𝑖𝑖0 − 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖

2
=  𝐷𝐷𝑖𝑖0 + 𝐷𝐷𝑖𝑖1 ∙ 𝑏𝑏𝑖𝑖 +  𝐷𝐷𝑖𝑖2 ∙ 𝑏𝑏𝑖𝑖

2 +  𝐷𝐷𝑖𝑖3 ∙ 𝑏𝑏𝑖𝑖
3 + 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

 

 𝐷𝐷𝑖𝑖1 ∙ 𝑏𝑏𝑖𝑖 +  𝐷𝐷𝑖𝑖2 ∙ 𝑏𝑏𝑖𝑖
2 +  𝐷𝐷𝑖𝑖3 ∙ 𝑏𝑏𝑖𝑖

3 + 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖 = 0 

Substitute Eq.(20-1,20-2,20-3) into the above equation 

Becomes  𝛽𝛽𝑖𝑖(𝑖𝑖) ∙ 𝑏𝑏𝑖𝑖 +  𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝛽𝛽𝑖𝑖(𝑖𝑖)  −3 𝐷𝐷𝑖𝑖3∙𝑏𝑏𝑖𝑖2

2𝑏𝑏𝑖𝑖
∙ 𝑏𝑏𝑖𝑖

2 +  𝐷𝐷𝑖𝑖3 ∙ 𝑏𝑏𝑖𝑖
3 + 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖 = 0 

  𝛽𝛽𝑖𝑖(𝑖𝑖) +  𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝛽𝛽𝑖𝑖(𝑖𝑖)  −3 𝐷𝐷𝑖𝑖3∙𝑏𝑏𝑖𝑖2

2
+  𝐷𝐷𝑖𝑖3 ∙ 𝑏𝑏𝑖𝑖

2 + 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 = 0 

  −1
2

 𝐷𝐷𝑖𝑖3 ∙ �𝑏𝑏𝑖𝑖
2� +  

𝛽𝛽𝑖𝑖(𝑖𝑖+1)+𝛽𝛽𝑖𝑖(𝑖𝑖)+2𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒

2
= 0  

𝐷𝐷𝑖𝑖3 =  
𝛽𝛽𝑖𝑖(𝑖𝑖+1)+𝛽𝛽𝑖𝑖(𝑖𝑖)+2𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒

𝑏𝑏𝑖𝑖2
                                                                    

(20-4) 

(20-3) now becomes : 

  𝐷𝐷𝑖𝑖2 =  𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝛽𝛽𝑖𝑖(𝑖𝑖)  −3 𝐷𝐷𝑖𝑖3∙𝑏𝑏𝑖𝑖2

2𝑏𝑏𝑖𝑖
=  

𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝛽𝛽𝑖𝑖(𝑖𝑖)  −3 
𝛽𝛽𝑖𝑖(𝑖𝑖+1)+𝛽𝛽𝑖𝑖(𝑖𝑖)+2𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒

𝑏𝑏𝑖𝑖
2  ∙𝑏𝑏𝑖𝑖2

2𝑏𝑏𝑖𝑖
 

 𝐷𝐷𝑖𝑖2 = 
𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝛽𝛽𝑖𝑖(𝑖𝑖)  −3∙(𝛽𝛽𝑖𝑖(𝑖𝑖+1)+𝛽𝛽𝑖𝑖(𝑖𝑖)+2𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 )  

2𝑏𝑏𝑖𝑖
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 𝐷𝐷𝑖𝑖2 =
𝛽𝛽𝑖𝑖(𝑖𝑖+1)−𝛽𝛽𝑖𝑖(𝑖𝑖)  −3𝛽𝛽𝑖𝑖(𝑖𝑖+1)−3𝛽𝛽𝑖𝑖(𝑖𝑖)−6𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 )   

2𝑏𝑏𝑖𝑖
  

𝐷𝐷𝑖𝑖2 = −
𝛽𝛽𝑖𝑖(𝑖𝑖+1)+2𝛽𝛽𝑖𝑖(𝑖𝑖)+3𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒   

𝑏𝑏𝑖𝑖
  

Then Eq(19) can be written as: 

𝜓𝜓𝑛𝑛𝑛𝑛
𝜒𝜒 (𝑠𝑠𝑖𝑖) = 𝜓𝜓�𝑛𝑛𝑖𝑖

𝜒𝜒 + 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖

2
+ 𝛽𝛽𝑖𝑖(𝑖𝑖) ∙ 𝑠𝑠𝑖𝑖 −

𝛽𝛽𝑖𝑖(𝑖𝑖+1)+2𝛽𝛽𝑖𝑖(𝑖𝑖)+3𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒   

𝑏𝑏𝑖𝑖
∙ 𝑠𝑠𝑖𝑖2 +

𝛽𝛽𝑖𝑖(𝑖𝑖+1)+𝛽𝛽𝑖𝑖(𝑖𝑖)+2𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒

𝑏𝑏𝑖𝑖2
∙ 𝑠𝑠𝑖𝑖3  (21)  

 

 

Fig. 3.3 - Typical deformed shape of the ith wall of a thin-walled beam 

In order to find the eight coefficients 𝛽𝛽𝑖𝑖(𝑖𝑖),𝛽𝛽𝑖𝑖(𝑖𝑖+1) where 𝑖𝑖 =1,2,3,4 , Rotation and Moment 

continuity at  𝑖𝑖𝑡𝑡ℎ and  𝑖𝑖 + 1𝑡𝑡ℎ corners at 𝑖𝑖𝑡𝑡ℎwall must be satisfied : 

               𝛽𝛽𝑖𝑖(𝑖𝑖+1) =  𝛽𝛽𝑖𝑖+1(𝑖𝑖+1)  (22a) 

         𝑀𝑀�𝑖𝑖(𝑖𝑖+1) =  𝑀𝑀�𝑖𝑖+1(𝑖𝑖+1)(22b) 

The moments 𝑀𝑀�𝑖𝑖(𝑖𝑖)and 𝑀𝑀�𝑖𝑖(𝑖𝑖+1) of the 𝑖𝑖𝑡𝑡ℎ wall at the 𝑖𝑖𝑡𝑡ℎ and 𝑖𝑖 + 1𝑡𝑡ℎ corners are given by: 

   𝑀𝑀�𝑖𝑖(𝑖𝑖) =  𝑀𝑀𝑖𝑖(𝑠𝑠𝑖𝑖 = 0), 𝑀𝑀�𝑖𝑖(𝑖𝑖+1) =  𝑀𝑀𝑖𝑖(𝑠𝑠𝑖𝑖 = 𝑏𝑏𝑖𝑖)  
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The moment 𝑀𝑀�𝑖𝑖 (𝑠𝑠𝑖𝑖) of the 𝑖𝑖𝑡𝑡ℎ wall  can be approximated by classical beam theory 𝑀𝑀 =

𝐸𝐸𝐸𝐸𝑦𝑦′′  

   𝑀𝑀�𝑖𝑖 (𝑠𝑠𝑖𝑖) =  𝐸𝐸𝑡𝑡
3

12
 ∙  

𝑑𝑑2 𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒

𝑑𝑑𝑠𝑠𝑖𝑖2
 , where t = thickness of the wall 

Deriving Distortional constants 

Solving for 12 constants for distortion function (𝜓𝜓�𝑠𝑠𝑠𝑠
𝜒𝜒 , 𝜓𝜓�𝑛𝑛𝑖𝑖

𝜒𝜒 , 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒  ,  i = 1,2,3,4): 

For these 12 constants, there are 11 conditions that can solve 11 unknowns where one of 

the twelve can be set arbitrary. In this paper, 𝜓𝜓�𝑠𝑠1
𝜒𝜒  is assumed to be known value, 11 

equations are therefore written in terms of 𝜓𝜓�𝑠𝑠1
𝜒𝜒 . 

Solving for the tangential translation constants 𝜓𝜓�𝑠𝑠𝑠𝑠
𝜒𝜒  , Eq(18) must be satisified. 

�  �𝑟𝑟(𝑠𝑠𝑖𝑖) ∙ �𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
𝑑𝑑𝑑𝑑 = 0

4 

𝑖𝑖=1

        (18𝑎𝑎) 

�  ��𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
∙ 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖  𝑑𝑑𝑑𝑑 = 0

4 

𝑖𝑖=1

        (18𝑏𝑏) 

�  ��𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
∙ 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑖𝑖 𝑑𝑑𝑑𝑑 = 0

4 

𝑖𝑖=1

        (18𝑐𝑐) 
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The virtual work by the distortion stress 𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 (𝑠𝑠) must be zero, Eq(18) then becomes 

�  �𝑟𝑟(𝑠𝑠𝑖𝑖) ∙ �𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
𝑑𝑑𝑑𝑑 =  �𝑟𝑟(𝑠𝑠𝑖𝑖) ∙ 𝜓𝜓�𝑠𝑠𝑠𝑠

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖 ∙ 𝑡𝑡 = 0     (18𝑎𝑎)
4

𝑖𝑖=1

4 

𝑖𝑖=1

 

�  ��𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
∙ 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖 𝑑𝑑𝑑𝑑 =  �𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖 ∙ 𝜓𝜓�𝑠𝑠𝑠𝑠

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖 ∙ 𝑡𝑡 = 0     (18𝑏𝑏)
4

𝑖𝑖=1

4 

𝑖𝑖=1

 

�  ��𝜎𝜎𝑠𝑠𝑠𝑠
𝜒𝜒 �

𝑖𝑖
∙ 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑖𝑖 𝑑𝑑𝑑𝑑 = �𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑖𝑖 ∙ 𝜓𝜓�𝑠𝑠𝑠𝑠

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖 ∙ 𝑡𝑡 = 0
4

𝑖𝑖=1

4 

𝑖𝑖=1

     (18𝑐𝑐) 

Thus: 

𝑟𝑟1 ∙ 𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ 𝑏𝑏1 ∙ 𝑡𝑡 + 𝑟𝑟2 ∙ 𝜓𝜓�𝑠𝑠2

𝜒𝜒 ∙ 𝑏𝑏2 ∙ 𝑡𝑡 + 𝑟𝑟3 ∙ 𝜓𝜓�𝑠𝑠3
𝜒𝜒 ∙ 𝑏𝑏3 ∙ 𝑡𝑡 + 𝑟𝑟4 ∙ 𝜓𝜓�𝑠𝑠4

𝜒𝜒 ∙ 𝑏𝑏4 ∙ 𝑡𝑡 = 0                (18a’) 

cos𝛼𝛼1 ∙ 𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ 𝑏𝑏1 ∙ 𝑡𝑡 + cos𝛼𝛼2 ∙ 𝜓𝜓�𝑠𝑠2

𝜒𝜒 ∙ 𝑏𝑏2 ∙ 𝑡𝑡 + cos𝛼𝛼3 ∙ 𝜓𝜓�𝑠𝑠3
𝜒𝜒 ∙ 𝑏𝑏3 ∙ 𝑡𝑡 + cos𝛼𝛼4 ∙ 𝜓𝜓�𝑠𝑠4

𝜒𝜒 ∙ 𝑏𝑏4 ∙ 𝑡𝑡 

= 0       (18b’) 

sin𝛼𝛼1 ∙ 𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ 𝑏𝑏1 ∙ 𝑡𝑡 + sin𝛼𝛼2 ∙ 𝜓𝜓�𝑠𝑠2

𝜒𝜒 ∙ 𝑏𝑏2 ∙ 𝑡𝑡 + sin𝛼𝛼3 ∙ 𝜓𝜓�𝑠𝑠3
𝜒𝜒 ∙ 𝑏𝑏3 ∙ 𝑡𝑡 + sin𝛼𝛼4 ∙ 𝜓𝜓�𝑠𝑠4

𝜒𝜒 ∙ 𝑏𝑏4 ∙ 𝑡𝑡 

= 0      (18c’) 

From Eq(18a),  

𝜓𝜓�𝑠𝑠2
𝜒𝜒 =  1

𝑟𝑟2∙𝑏𝑏2
∙ [−𝑟𝑟3 ∙ 𝜓𝜓�𝑠𝑠3

𝜒𝜒 ∙ 𝑏𝑏3 − 𝑟𝑟4 ∙ 𝜓𝜓�𝑠𝑠4
𝜒𝜒 ∙ 𝑏𝑏4 − 𝑟𝑟1 ∙ 𝜓𝜓�𝑠𝑠1

𝜒𝜒 ∙ 𝑏𝑏1]  

From Eq(18b), 

𝜓𝜓�𝑠𝑠3
𝜒𝜒 =  

[𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ 𝑏𝑏1 ∙ (𝑟𝑟2 cos𝛼𝛼1 − 𝑟𝑟1 cos𝛼𝛼2) + 𝜓𝜓�𝑠𝑠4

𝜒𝜒 ∙ 𝑏𝑏4 ∙ (𝑟𝑟2cos𝛼𝛼4 − 𝑟𝑟4 cos𝛼𝛼2)]
𝑏𝑏3(𝑟𝑟3 cos𝛼𝛼2 − 𝑟𝑟2 cos𝛼𝛼3)  
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From Eq(18c) 

𝜓𝜓�𝑠𝑠4
𝜒𝜒 =  −𝜓𝜓�𝑠𝑠1

𝜒𝜒  ∙
𝑏𝑏1
𝑏𝑏4
∙
𝑟𝑟3[𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼1 cos𝛼𝛼2 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼2 cos𝛼𝛼1] + 𝑟𝑟2[𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼3 cos𝛼𝛼1 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼1 cos𝛼𝛼3] + 𝑟𝑟1[𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼2 cos𝛼𝛼3 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼3 cos𝛼𝛼2]
𝑟𝑟2[𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼3 cos𝛼𝛼4 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼3 cos𝛼𝛼4] + 𝑟𝑟3[𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼4 cos𝛼𝛼2 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼2 cos𝛼𝛼4] + 𝑟𝑟4[𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼2 cos𝛼𝛼3 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼3 cos𝛼𝛼2] 

 

After determining 𝜓𝜓�𝑠𝑠𝑠𝑠
𝜒𝜒  (𝑖𝑖 = 1,2,3,4), considering the continuity equations expressed by 

Eqs. (16) and Eqs.(20) , the remaining 8 coefficients can now be obtained:  

From Eqs.(16a) 

𝜓𝜓𝑠𝑠𝑖𝑖
𝜒𝜒|𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 =  𝜓𝜓𝑠𝑠𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ cos(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖) −  𝜓𝜓𝑛𝑛𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖)        (16𝑎𝑎) 

(𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,3,4 ; 5 → 1) 

𝑖𝑖 = 1       𝜓𝜓𝑠𝑠1
𝜒𝜒 |𝑠𝑠1=𝑏𝑏1

 =  𝜓𝜓𝑠𝑠2
𝜒𝜒 |𝑠𝑠2=0

 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) −  𝜓𝜓𝑛𝑛2
𝜒𝜒 |𝑠𝑠2=0

 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1)           (16a-1) 

𝑖𝑖 = 2       𝜓𝜓𝑠𝑠2
𝜒𝜒 |𝑠𝑠2=𝑏𝑏2

 =  𝜓𝜓𝑠𝑠3
𝜒𝜒 |𝑠𝑠3=0

 ∙ cos(𝛼𝛼3 − 𝛼𝛼2) −  𝜓𝜓𝑛𝑛3
𝜒𝜒 |𝑠𝑠3=0

 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼3 − 𝛼𝛼2)           (16a-

2) 

𝑖𝑖 = 3       𝜓𝜓𝑠𝑠3
𝜒𝜒 |𝑠𝑠3=𝑏𝑏3

 =  𝜓𝜓𝑠𝑠4
𝜒𝜒 |𝑠𝑠4=0

 ∙ cos(𝛼𝛼4 − 𝛼𝛼3) −  𝜓𝜓𝑛𝑛4
𝜒𝜒 |𝑠𝑠4=0

 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼4 − 𝛼𝛼3)            (16a-

3) 

𝑖𝑖 = 4       𝜓𝜓𝑠𝑠4
𝜒𝜒 |𝑠𝑠4=𝑏𝑏4

 =  𝜓𝜓𝑠𝑠1
𝜒𝜒 |𝑠𝑠1=0

 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) −  𝜓𝜓𝑛𝑛1
𝜒𝜒 |𝑠𝑠1=0

 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4)            (16a-

4) 

Inserting the continuity equations in Eqs.(20a) and Eqs.(20b) 

       𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=0

 =  𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 + 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

      (20𝑎𝑎)   

        𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 =  𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 − 𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 ∙ 𝑏𝑏𝑖𝑖
2

      (20𝑏𝑏) 
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Also considering the tangential translations across each wall is constant: 

𝜓𝜓𝑠𝑠𝑠𝑠
𝜒𝜒(𝑠𝑠𝑖𝑖) = 𝜓𝜓�𝑠𝑠𝑠𝑠

𝜒𝜒        (15𝑎𝑎) 

Then Eqs.(16a) is now: 

𝑖𝑖 = 1       𝜓𝜓�𝑠𝑠1
𝜒𝜒 =  𝜓𝜓�𝑠𝑠2

𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) − [ 𝜓𝜓�𝑛𝑛2
𝜒𝜒 + 𝜓𝜓�𝜃𝜃2

𝜒𝜒 ∙ 𝑏𝑏2
2

 ] ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1)      (16a-1) 

𝑖𝑖 = 2      𝜓𝜓�𝑠𝑠2
𝜒𝜒 =  𝜓𝜓�𝑠𝑠3

𝜒𝜒 ∙ cos(𝛼𝛼3 − 𝛼𝛼2) − [ 𝜓𝜓�𝑛𝑛3
𝜒𝜒 + 𝜓𝜓�𝜃𝜃3

𝜒𝜒 ∙ 𝑏𝑏3
2

 ] ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼3 − 𝛼𝛼2)      (16a-2) 

𝑖𝑖 = 3       𝜓𝜓�𝑠𝑠3
𝜒𝜒 = 𝜓𝜓�𝑠𝑠4

𝜒𝜒 ∙ cos(𝛼𝛼4 − 𝛼𝛼3) − [ 𝜓𝜓�𝑛𝑛4
𝜒𝜒 + 𝜓𝜓�𝜃𝜃4

𝜒𝜒 ∙ 𝑏𝑏4
2

 ] ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼4 − 𝛼𝛼3)      (16a-3) 

𝑖𝑖 = 4      𝜓𝜓�𝑠𝑠4
𝜒𝜒 =  𝜓𝜓�𝑠𝑠1

𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) − [ 𝜓𝜓�𝑛𝑛1
𝜒𝜒 + 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙ 𝑏𝑏1
2

 ] ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4)       (16a-4) 

The solution for 𝜓𝜓�𝑛𝑛1
𝜒𝜒  and 𝜓𝜓�𝜃𝜃1

𝜒𝜒  are calculated in the following procedure: 

𝜓𝜓𝑛𝑛𝑖𝑖
𝜒𝜒 |𝑠𝑠𝑖𝑖=𝑏𝑏𝑖𝑖

 =  𝜓𝜓𝑠𝑠𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ sin(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖) +  𝜓𝜓𝑛𝑛𝑖𝑖+1
𝜒𝜒 |𝑠𝑠𝑖𝑖+1=0

 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖)       (16𝑏𝑏) 

       (𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,3,4 ; 5 → 1) 

For 𝑖𝑖 = 1          𝜓𝜓𝑛𝑛1
𝜒𝜒 |𝑠𝑠1=𝑏𝑏1

 =  𝜓𝜓𝑠𝑠2
𝜒𝜒 |𝑠𝑠2=0

 ∙ sin(𝛼𝛼2 − 𝛼𝛼1) +  𝜓𝜓𝑛𝑛2
𝜒𝜒 |𝑠𝑠2=0

 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼2 − 𝛼𝛼1) 

𝜓𝜓�𝑛𝑛1
𝜒𝜒 − 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙ 𝑏𝑏1
2

=  𝜓𝜓�𝑠𝑠2
𝜒𝜒 ∙ sin(𝛼𝛼2 − 𝛼𝛼1) + [ 𝜓𝜓�𝑛𝑛2

𝜒𝜒 + 𝜓𝜓�𝜃𝜃2
𝜒𝜒 ∙ 𝑏𝑏2

2
 ] ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼2 − 𝛼𝛼1)   (16b-1) 

From Eqs.(16a-1)  

 𝜓𝜓�𝑛𝑛2
𝜒𝜒 + 𝜓𝜓�𝜃𝜃2

𝜒𝜒 ∙
𝑏𝑏2
2

=  
1

𝑠𝑠𝑠𝑠𝑛𝑛(𝛼𝛼2 − 𝛼𝛼1)  ∙ � 𝜓𝜓�𝑠𝑠2
𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) −   𝜓𝜓�𝑠𝑠1

𝜒𝜒   � 

By following similar procedures, the following expressions could be obtained: 

 𝜓𝜓�𝑛𝑛1
𝜒𝜒 + 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙
𝑏𝑏1
2

=  
1

𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4)  ∙ [ 𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) −   𝜓𝜓�𝑠𝑠4

𝜒𝜒   ] 
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From Eqs.(16b) 

𝜓𝜓𝑛𝑛1
𝜒𝜒 |𝑠𝑠1=𝑏𝑏1

 =  𝜓𝜓�𝑛𝑛1
𝜒𝜒 − 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙
𝑏𝑏1
2

=  𝜓𝜓�𝑠𝑠2
𝜒𝜒 ∙ sin(𝛼𝛼2 − 𝛼𝛼1) +  𝜓𝜓𝑛𝑛2

𝜒𝜒 |𝑠𝑠2=0
 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼2 − 𝛼𝛼1)        

𝜓𝜓�𝑛𝑛1
𝜒𝜒 − 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙ 𝑏𝑏1
2

  =  𝜓𝜓�𝑠𝑠2
𝜒𝜒 ∙ sin(𝛼𝛼2 − 𝛼𝛼1) + �𝜓𝜓�𝑛𝑛2

𝜒𝜒 + 𝜓𝜓�𝜃𝜃2
𝜒𝜒 ∙ 𝑏𝑏2

2
  � ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼2 − 𝛼𝛼1)   (16b-1) 

From Eq.(16a-1) 

 𝜓𝜓�𝑛𝑛2
𝜒𝜒 + 𝜓𝜓�𝜃𝜃2

𝜒𝜒 ∙
𝑏𝑏2
2

 =
1

𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1)  ∙ � 𝜓𝜓�𝑠𝑠2
𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) − 𝜓𝜓�𝑠𝑠1

𝜒𝜒  � 

After rearranging the terms: 

𝜓𝜓�𝑛𝑛1
𝜒𝜒 − 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙
𝑏𝑏1
2

=
1

𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1) ∙ � 𝜓𝜓
�
𝑠𝑠2
𝜒𝜒 − 𝜓𝜓�𝑠𝑠1

𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) � 

From Eq.(16a-4), and combining with the above expression 

𝜓𝜓�𝑠𝑠4
𝜒𝜒 =  𝜓𝜓�𝑠𝑠1

𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) − [ 𝜓𝜓�𝑛𝑛1
𝜒𝜒 + 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙
𝑏𝑏1
2

 ] ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4) 

𝜓𝜓�𝑛𝑛1
𝜒𝜒 + 𝜓𝜓�𝜃𝜃1

𝜒𝜒 ∙
𝑏𝑏1
2

=  
1

𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1) �𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) −  𝜓𝜓�𝑠𝑠4

𝜒𝜒 �       (16𝑏𝑏 − 2) 

Setting  Eq.(16b-1) = Eq.(16b-2), 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒  and  𝜓𝜓�𝑛𝑛𝑖𝑖

𝜒𝜒  (i = 1,2,3,4) could be obtained 

𝜓𝜓�𝜃𝜃1
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) −   𝜓𝜓�𝑠𝑠4

𝜒𝜒   �
𝑏𝑏1 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4)  −  

� 𝜓𝜓�𝑠𝑠2
𝜒𝜒 − 𝜓𝜓�𝑠𝑠1

𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) �
𝑏𝑏1 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1)  

𝜓𝜓�𝜃𝜃2
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠2
𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) −   𝜓𝜓�𝑠𝑠1

𝜒𝜒   �
𝑏𝑏2 ∙ 𝑠𝑠𝑖𝑖𝑖𝑖(𝛼𝛼2 − 𝛼𝛼1)  −  

� 𝜓𝜓�𝑠𝑠3
𝜒𝜒 − 𝜓𝜓�𝑠𝑠2

𝜒𝜒 ∙ cos(𝛼𝛼3 − 𝛼𝛼2) �
𝑏𝑏2 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼3 − 𝛼𝛼2)  

𝜓𝜓�𝜃𝜃3
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠3
𝜒𝜒 ∙ cos(𝛼𝛼3 − 𝛼𝛼2) −   𝜓𝜓�𝑠𝑠2

𝜒𝜒   �
𝑏𝑏3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼3 − 𝛼𝛼2)  −  

� 𝜓𝜓�𝑠𝑠4
𝜒𝜒 − 𝜓𝜓�𝑠𝑠3

𝜒𝜒 ∙ cos(𝛼𝛼4 − 𝛼𝛼3) �
𝑏𝑏3 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼4 − 𝛼𝛼3)  
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𝜓𝜓�𝜃𝜃4
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠4
𝜒𝜒 ∙ cos(𝛼𝛼4 − 𝛼𝛼3) −   𝜓𝜓�𝑠𝑠3

𝜒𝜒   �
𝑏𝑏4 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼4 − 𝛼𝛼3)  −  

� 𝜓𝜓�𝑠𝑠1
𝜒𝜒 − 𝜓𝜓�𝑠𝑠4

𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) �
𝑏𝑏4 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4)  

𝜓𝜓�𝑛𝑛1
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠1
𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) −   𝜓𝜓�𝑠𝑠4

𝜒𝜒   �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4)  −  

� 𝜓𝜓�𝑠𝑠2
𝜒𝜒 − 𝜓𝜓�𝑠𝑠1

𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1)  

𝜓𝜓�𝑛𝑛2
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠2
𝜒𝜒 ∙ cos(𝛼𝛼2 − 𝛼𝛼1) −   𝜓𝜓�𝑠𝑠1

𝜒𝜒   �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼2 − 𝛼𝛼1)  −  

� 𝜓𝜓�𝑠𝑠3
𝜒𝜒 − 𝜓𝜓�𝑠𝑠2

𝜒𝜒 ∙ cos(𝛼𝛼3 − 𝛼𝛼2) �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼3 − 𝛼𝛼2)  

𝜓𝜓�𝑛𝑛3
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠3
𝜒𝜒 ∙ cos(𝛼𝛼3 − 𝛼𝛼2) −   𝜓𝜓�𝑠𝑠2

𝜒𝜒   �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼3 − 𝛼𝛼2)  −  

� 𝜓𝜓�𝑠𝑠4
𝜒𝜒 − 𝜓𝜓�𝑠𝑠3

𝜒𝜒 ∙ cos(𝛼𝛼4 − 𝛼𝛼3) �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼4 − 𝛼𝛼3)  

𝜓𝜓�𝑛𝑛4
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠4
𝜒𝜒 ∙ cos(𝛼𝛼4 − 𝛼𝛼3) −   𝜓𝜓�𝑠𝑠3

𝜒𝜒   �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼4 − 𝛼𝛼3)  −  

� 𝜓𝜓�𝑠𝑠1
𝜒𝜒 − 𝜓𝜓�𝑠𝑠4

𝜒𝜒 ∙ cos(𝛼𝛼1 − 𝛼𝛼4) �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1 − 𝛼𝛼4)  

A general form of 𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒  and  𝜓𝜓�𝑛𝑛𝑖𝑖

𝜒𝜒   at ith wall can be expressed as: 

𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠𝑖𝑖
𝜒𝜒 ∙ cos(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖−1) −   𝜓𝜓�𝑠𝑠𝑖𝑖−1

𝜒𝜒   �
𝑏𝑏𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖−1)  −  

� 𝜓𝜓�𝑠𝑠𝑖𝑖+1
𝜒𝜒 − 𝜓𝜓�𝑠𝑠𝑖𝑖

𝜒𝜒 ∙ cos(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖) �
𝑏𝑏𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖)

 

𝜓𝜓�𝑛𝑛𝑖𝑖
𝜒𝜒 =  

� 𝜓𝜓�𝑠𝑠𝑖𝑖
𝜒𝜒 ∙ cos(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖−1) −   𝜓𝜓�𝑠𝑠𝑖𝑖−1

𝜒𝜒   �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖−1)  −  

� 𝜓𝜓�𝑠𝑠𝑖𝑖+1
𝜒𝜒 − 𝜓𝜓�𝑠𝑠𝑖𝑖

𝜒𝜒 ∙ cos(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖) �
2𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑖𝑖+1 − 𝛼𝛼𝑖𝑖)

 

With the 12 constants known, the distortion function can be plotted as Fig.3.4 using 

Eq.(15), Eq.(19) and Eq.(22) 

 

Fig. 3.4 - The distorted shape of the cross-section using the distortion function 
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3.3 One-Dimensional Analysis 

The potential energy can be expressed as : 

Π =  1
2

 ∫𝜎𝜎𝑖𝑖𝑖𝑖 ∙ 𝜖𝜖𝑖𝑖𝑖𝑖  𝑑𝑑𝑑𝑑 - ∫(𝑝𝑝 ∙ 𝑢𝑢�𝑧𝑧 + 𝑞𝑞 ∙ 𝑢𝑢�𝑠𝑠)𝑑𝑑𝑑𝑑                        (23) 

 Where p and q are the external loads in the axial and tangential directions. 

Π =  
1
2

 ��𝑎𝑎𝐸𝐸1𝑈𝑈′2 + 𝑐𝑐𝐸𝐸1𝜒𝜒2 + 𝐺𝐺�𝑏𝑏1𝑈𝑈2 + 𝑏𝑏1∗𝜃𝜃′  
2 + 𝑏𝑏5𝜒𝜒′

2�

+ 2𝐺𝐺(𝑏𝑏2𝑈𝑈𝜃𝜃′ + 𝑏𝑏3𝑈𝑈𝜒𝜒′ + 𝑏𝑏4𝜃𝜃′𝜒𝜒′)�𝑑𝑑𝑑𝑑 

     −∫  (𝑝𝑝1𝑈𝑈 + 𝑞𝑞1𝜃𝜃 + 𝑞𝑞2𝜒𝜒)𝑑𝑑𝑑𝑑           (24) 

Constants 𝑎𝑎, 𝑏𝑏1, 𝑏𝑏1∗, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4, 𝑏𝑏5 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 are 

𝑎𝑎 =  �(𝜓𝜓𝑧𝑧𝑈𝑈)2
 

𝐴𝐴

𝑑𝑑𝑑𝑑 =
ℎ2 ∙ 𝑏𝑏2 ∙ 𝑡𝑡 ∙ (ℎ − 𝑏𝑏)2

2(ℎ + 𝑏𝑏)  

𝑏𝑏1∗ =  ��𝜓𝜓𝑠𝑠𝜃𝜃�
2

 

𝐴𝐴

𝑑𝑑𝑑𝑑 =  
𝑏𝑏 ∙ ℎ ∙ 𝑡𝑡 ∙ (𝑏𝑏 + ℎ)

2
 

𝑏𝑏1 =  ��
𝑑𝑑𝑑𝑑𝑧𝑧𝑈𝑈

𝑑𝑑𝑑𝑑
�
2 

𝐴𝐴

𝑑𝑑𝑑𝑑 =
ℎ ∙ 𝑏𝑏 ∙ 𝑡𝑡 ∙ (ℎ − 𝑏𝑏)2

2(ℎ + 𝑏𝑏)  

𝑏𝑏2 =  ��𝜓𝜓𝑠𝑠𝜃𝜃  ∙
𝑑𝑑𝑑𝑑𝑧𝑧𝑈𝑈

𝑑𝑑𝑑𝑑
�
2 

𝐴𝐴

𝑑𝑑𝑑𝑑 =  
𝑏𝑏 ∙ ℎ ∙ 𝑡𝑡 ∙ (ℎ − 𝑏𝑏)2

2(ℎ + 𝑏𝑏)
 

𝑏𝑏3 =  ��𝜓𝜓𝑠𝑠
𝜒𝜒  ∙

𝑑𝑑𝑑𝑑𝑧𝑧𝑈𝑈

𝑑𝑑𝑑𝑑
�

  

𝐴𝐴

𝑑𝑑𝑑𝑑 =  𝜓𝜓�𝑠𝑠1
𝜒𝜒  ∙

2 ∙ ℎ ∙ 𝑡𝑡 ∙ (ℎ − 𝑏𝑏)
(ℎ + 𝑏𝑏)

 

𝑏𝑏4 =  ��𝜓𝜓𝑠𝑠𝜃𝜃  ∙ 𝜓𝜓𝑧𝑧
𝜒𝜒�

 
 

𝐴𝐴

𝑑𝑑𝑑𝑑 =   0 
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𝑏𝑏5 =  ��𝜓𝜓𝑠𝑠
𝜒𝜒�

2
 

𝐴𝐴

𝑑𝑑𝑑𝑑 =   (𝜓𝜓�𝑠𝑠1
𝜒𝜒 )2  ∙ (ℎ + 𝑏𝑏) 

𝑐𝑐 =  �𝑛𝑛2 �
𝑑𝑑2  𝜓𝜓𝑛𝑛𝑖𝑖

𝜒𝜒

𝑑𝑑𝑠𝑠𝑖𝑖2
�
2 

𝐴𝐴

𝑑𝑑𝑑𝑑 

= �  𝑡𝑡3 
4

𝑖𝑖=1

�(
𝛽𝛽𝑖𝑖(𝑖𝑖+1) + 𝛽𝛽𝑖𝑖(𝑖𝑖) + 2𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒

𝑏𝑏𝑖𝑖
 )2 +

�𝛽𝛽𝑖𝑖(𝑖𝑖+1) + 𝛽𝛽𝑖𝑖(𝑖𝑖) + 2𝜓𝜓�𝜃𝜃𝑖𝑖
𝜒𝜒 � �−𝛽𝛽𝑖𝑖(𝑖𝑖+1) − 2𝛽𝛽𝑖𝑖(𝑖𝑖) − 3𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 �  
𝑏𝑏𝑖𝑖

+  
�−𝛽𝛽𝑖𝑖(𝑖𝑖+1) − 2𝛽𝛽𝑖𝑖(𝑖𝑖) − 3𝜓𝜓�𝜃𝜃𝑖𝑖

𝜒𝜒 �
2

3𝑏𝑏𝑖𝑖
  

  
�

  

 

where 𝑝𝑝1, 𝑞𝑞1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞2 are one dimensional load terms defined as 

𝑝𝑝1 = �𝑝𝑝 𝜓𝜓𝑧𝑧𝑈𝑈  𝑑𝑑𝑑𝑑
 

𝐴𝐴
 

𝑞𝑞1 = �𝑞𝑞 𝜓𝜓𝑠𝑠𝜃𝜃  𝑑𝑑𝑑𝑑
 

𝐴𝐴
 

𝑞𝑞2 = �𝑞𝑞 𝜓𝜓𝑠𝑠
𝜒𝜒 𝑑𝑑𝑑𝑑

 

𝐴𝐴
 

Invoking the stationary condition on Π in Eq.(24) yields the following governing 

equations: 

−𝐸𝐸1𝑎𝑎𝑈𝑈′′ +  𝐺𝐺𝑏𝑏1𝑈𝑈 + 𝐺𝐺𝑏𝑏2𝜃𝜃′ + 𝐺𝐺𝑏𝑏3𝜒𝜒′ =  0   (25a) 

      − 𝐺𝐺𝑏𝑏2𝑈𝑈′ − 𝐺𝐺𝑏𝑏 1
∗𝜃𝜃′′ − 𝐺𝐺𝑏𝑏4𝜒𝜒′′ =  0      (25b) 

−𝐺𝐺𝑏𝑏3𝑈𝑈′ −  𝐺𝐺𝑏𝑏4𝜃𝜃′′ − 𝐺𝐺𝑏𝑏5𝜒𝜒′′ + 𝐸𝐸1𝑐𝑐𝜒𝜒 =  0                 (25c) 
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In the first variation of Π, after integration, the boundary terms give the stress resultants: 

𝐻𝐻 ≡  �𝜎𝜎𝑧𝑧𝑧𝑧𝜓𝜓𝑠𝑠𝜃𝜃  𝑑𝑑𝑑𝑑
 

𝐴𝐴
= 𝐺𝐺(𝑏𝑏1∗𝜃𝜃′ + 𝑏𝑏2𝑈𝑈 + 𝑏𝑏4𝜒𝜒  

′ )   (26𝑎𝑎) 

                𝐵𝐵 ≡ �𝜎𝜎𝑧𝑧𝑧𝑧𝜓𝜓𝑧𝑧𝑈𝑈  𝑑𝑑𝑑𝑑 = 𝐸𝐸1𝑎𝑎𝑈𝑈 
′

 

𝐴𝐴
                   (26𝑏𝑏) 

          𝑄𝑄 ≡ �𝜎𝜎𝑧𝑧𝑧𝑧𝜓𝜓𝑠𝑠
𝜒𝜒

 𝑑𝑑𝑑𝑑 = 𝐺𝐺(𝑏𝑏5  𝜒𝜒′ + 𝑏𝑏3𝑈𝑈 + 𝑏𝑏4𝜃𝜃  
′ )

 

𝐴𝐴
     (26𝑐𝑐)            

 Note: H,B and Q are the energy conjugates of Θ,𝑈𝑈,𝑎𝑎𝑎𝑎𝑎𝑎 𝜒𝜒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
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3.4 Finite Element Theory 

Standard two-node displacement-based  C0 continuous finite element approach is used: 

𝐾𝐾𝐾𝐾 = 𝑃𝑃 + 𝑄𝑄   (27) 

  Where the nodal displacement 𝑑𝑑 = {Θ1  𝑈𝑈1  𝜒𝜒1  Θ2 𝑈𝑈2 𝜒𝜒2 }𝑇𝑇   (28) 

Subscript 1 and 2 denote the node numbers in an element level. 

The load vectors P and Q are defined as 

𝑷𝑷 =  ∫ 𝑵𝑵𝑇𝑇 𝑹𝑹 |𝑗𝑗| 𝑑𝑑𝑑𝑑1
−1                 (29) 

𝑸𝑸 =  {H1  𝐵𝐵1  𝑄𝑄1  H2 𝐵𝐵2 𝑄𝑄2 }𝑇𝑇   (30) 

The matrix N is the linear shape function matrix defined as 

 (31) 

𝜉𝜉 in Eq.(29) is the dimensionless coordinate: 

𝜉𝜉 =  
2𝑧𝑧 − (𝑧𝑧1 + 𝑧𝑧2)

𝑧𝑧2 − 𝑧𝑧1
 

Where 𝑧𝑧1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧2 are the axial coordinate of the beam elements and  𝑙𝑙 = 𝑧𝑧2 − 𝑧𝑧1, Jacobian 

J = 𝑙𝑙/2 

𝑹𝑹 = {𝑞𝑞1   𝑝𝑝1  𝑞𝑞2}𝑇𝑇    (32) 
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Stiffness Matrix K : 
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Chapter 4 Finite element modeling 

 In this chapter, a number of cases were studied and the result by the present method were 

compared to the work by previous researchers and the existing F.E.M. computer program Abaqus 

using 3-D shell element models. Concentrated unsymmetrical loading and uniformly-distributed 

unsymmetrical loading were applied to models with different dimensions and boundary 

conditions to study the behavior of the thin-walled box beam under torsional loading. 

 The field variables including twisting, warping and distortion displacements, the direct 

warping and distortional (transverse bending) stresses were calculated. The results of Model1 to 

Model4 using present Method were compared with the F.E.M. software ABAQUS, whilst Model 

5 studied the behavior of a thicker cross-section compared to Model1 and Model6 was applied 

with a pair of uniformly-distributed loads. 

4.1 Model1-Cantilever box beam subjected to pair of opposite concentrated loads  

 Model1 was established referring to the experimental and numerical analysis by Boswell 

& Zhang (1985) and the asymptotic solutions by Balch & Steele (1987). In the experiment carried 

out by Boswell & Zhang (1985), a straight cantilever single-cell steel box beam was applied with 

a pair of opposite point loads at tip ends to form the concentrated torque (P = 4905N, T = 

1471.5Nm). The analytic solutions by Balch & Steele(1987) agrees with Boswell & Zhang(1985).  

 

Fig. 4.1.1 - Concentrated loading and the top right corner A   

The opposite concentrated loads P= 4905N can be decomposed into two types of 

loading , as shown in Fig.4.1.1, the torsional load and the distortional load which results 
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in twisting and distortion, respectively. The 3-Dimesional displacements of Corner A at 

the top right corner were calculated for convenience, while the overall deformations of 

the whole cross-section would be shown in the following section for Model1.   

Modeling in ABAQUS (F.E.M.) 

Preliminary Setting 

• 3-D shell , deformable, planar, Standard S4R elements 

• E = 196.2 kN/mm2 

• G = 77 kN/mm2 

• 𝑣𝑣 = 0.27 

• Flanges width = 300mm, webs height = 150mm 

• Uniform Thickness 𝑡𝑡 = 3.18 mm 

• Beam Length = 1500 mm 

Boundary and Loading Condition 

• Fixed-support at one end 

• Each of the concentrated load = 4905N and -4905N in y-direction 

 

Fig. 4.1.2 - Boundary and Loading condition of Model1 
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Meshing 

 The numbers of elements used in F.E.M. software and the developed present Program 

were chosen by the following comparison, the 3-dimensional displacements of top right corner A 

at the free end:  

 

Fig. 4.1.3 – 3-dimensional displacements of corner A with different number of elements  

The number of elements used for the F.E.M. Model in the longitudinal direction 

was 200, the element size is 7.5mmx7.5mm with thickness equals to 3.18mm as shown in 

Fig.4.1.5.  The largest difference of the three-dimensional displacements between using 

number of elements of 100 and 200 is 0.306 % which should provide enough accuracy of 

the analysis.  

To be consistent, the number of elements used in the present method is also 200 in 

the longitudinal direction and the size of element is the same.  
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Since the present method adopts only 1-dimesional Finite element theory, the 

meshing of the cross-section does not affect the accuracy of the analysis but only the 

continuity of the distortion function.  Fig.4.1.4 shows that the comparison of three-

dimensional displacements and the number of elements used. Note that Model2 and 

Model3 use the same number of elements as Model1, the detail of meshing is only 

discussed in this section.  

 

Fig. 4.1.4. – 3-dimensional displacements of corner A with different number of elements  

 

Fig. 4.1.5. -  Meshing of Model1 
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4.2 Model2- Fixed-supported box beam subjected to pair of opposite concentrated loads 

 Model2 refers to the Model1 with the same dimensions, but the Boundary 

conditions varied. Fixed supports were provided at both ends of the beam, restricted from 

any displacement at its end. The pair of opposite point loads was applied at the mid-span 

of the beam. 

Preliminary Setting 

• 3-D shell , deformable, planar, Standard S4R elements 

• E = 196.2 kN/mm2 ,G = 77 kN/mm2 ,  𝑣𝑣 = 0.27 

• Flanges width = 300mm, webs height = 150mm 

• Uniform Thickness 𝑡𝑡 = 3.18 mm 

• Beam Length = 1500 mm 

Boundary and Loading Condition 

• Fixed-support at both ends 

• Each of the concentrated load = ± 10000N in y-direction  at mid-span 

 

Fig. 4.2.1. - Loading and Boundary conditions of Model2 

Meshing 

• 200 elements in the longitudinal direction 
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• Element size = 7.5mm x 7.5mm x 3.18mm 

• The meshing detail can referred to Model1 

4.3 Model3 - Cantilever square box beam subjected to pair of opposite concentrated loads 

 Model3 refers to the Model1 with same boundary conditions but the cross-section 

is square. The beam was applied with a pair of opposite concentrated loads (P = ±4905 

N) same with Model1. The behavior of square-section is to be studied. 

Preliminary Setting 

• 3-D shell , deformable, planar, Standard S4R elements 

• E = 196.2 kN/mm2 , G = 77 kN/mm2 , 𝑣𝑣 = 0.27 

• Flanges width = 150mm, webs height = 150mm 

• Uniform Thickness 𝑡𝑡 = 3.18 mm 

• Beam Length = 1500 mm 

Boundary and Loading Condition 

• Fixed-support at one end 

• Each of the distributed load =  ±4905N in y-direction   

 

Fig. 4.3.1. - Boundary and Loading conditions of Model 3 
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Meshing 

• 200 elements in the longitudinal direction 

• Element size = 7.5mm x 7.5mm x 3.18mm 

4.4  Model4-Cantilever box beam subjected to pair of opposite concentrated loads 

 Model4 refers to the Model1 with same boundary conditions but the Flange 

length is 100mm and the web height is 150mm. The beam was applied with a pair of 

opposite concentrated loads (P = ±4905 N) same with Model1.  

Preliminary Setting 

• 3-D shell , deformable, planar, Standard S4R elements 

• E = 196.2 kN/mm2 , G = 77 kN/mm2 , 𝑣𝑣 = 0.27 

• Flanges width = 100mm, webs height = 150mm 

• Uniform Thickness 𝑡𝑡 = 3.18 mm 

• Beam Length = 1500 mm 

Boundary and Loading Condition 

• Fixed-support at one end 

• Each of the distributed load =  ±4905N in y-direction   

 

Fig. 4.4.1 -  Boundary and Loading conditions of Model 4 
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Meshing 

• 200 elements in the longitudinal direction 

• Element size = 7.5mm x 7.5mm x 3.18mm 

 

4.5 Model5-Cantilever box beam subjected to pair of opposite concentrated loads 

Preliminary Setting of the present method 

• 3-D shell , deformable, planar, Standard S4R elements 

• Flanges width = 150mm, webs height = 150mm 

• Uniform Thickness 𝑡𝑡 = 6 mm 

• Beam Length = 1500 mm 

Boundary and Loading Condition of the present method 

• Fixed-support at one end 

• Each of the concentrated load P =  ±4905N in y-direction at free end 

 

Fig. 4.5.1 - Boundary and Loading Condition 
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4.6 Model6- Cantilever box beam subjected to pair of opposite distributed loads 

Preliminary Setting of the present method 

• 3-D shell , deformable, planar, Standard S4R elements 

• Flanges width(b) = 300mm, webs height (h) = 150mm 

• Uniform Thickness 𝑡𝑡 = 3.18 mm 

• Beam Length = 1500 mm 

Boundary and Loading Condition of the present method 

• Fixed-support at one end 

• Each of the uniformly distributed load w =  ±3.27N/mm  in y-direction 

along two edges (P = 3.27 x 1500 = 4905N) 

 

 

Fig. 4.6.1. -  Boundary and loading conditions of Model6 
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Chapter 5 Result and Discussion 

The results to be discussed include the following field variables: 

• Tangential displacement of the contour  𝑢𝑢𝑠𝑠 

• Normal displacement of the contour   𝑢𝑢𝑛𝑛 

• Axial displacement of the contour   𝑢𝑢𝑧𝑧 

• Distortion Angle of the cross-section   𝛾𝛾𝑑𝑑 

• Twisting Angle of the cross-section    𝛾𝛾𝑡𝑡 

• Direct Warping Stress    𝜎𝜎𝑤𝑤 

• Distortion (Transverse bending) Stress 𝜎𝜎𝑑𝑑 

The definition of distortional angle 𝛾𝛾𝑑𝑑 can be referred to Balch & Steele (1987),  

𝜸𝜸𝒅𝒅 =  −
𝑢𝑢𝑠𝑠,1

𝑏𝑏
+ 
𝑢𝑢𝑠𝑠,4

ℎ
                                            (33) 

Where 𝑢𝑢𝑠𝑠,1 and 𝑢𝑢𝑠𝑠,4 denote the tangential displacement of contour 1 (top flange) and 4(right web), 
respectively; b is the width of flange; h is the depth of web. 

  With the present method, the distortional angle of the beam is compared with the 

asymptotic solution by Balch & Steele (1987) and numerical solution by Boswell & 

Zhang (1983). The numerical solution by Boswell & Zhang (1983) was in close 

agreement with their experimental result, which is not shown here. In Eq.(33), the 

distortional angle 𝜸𝜸𝒅𝒅 equals to the sum of the ratio of the tangential displacement of the 

contour over its length, with higher distortional angle, the more the cross-section is 

distorted. Note that 𝑢𝑢𝑠𝑠,1 is positive if it translates from right to left of wall 1, for the 

loading considered of Model1, following the distortion shape, 𝑢𝑢𝑠𝑠,1 has a negative value as 
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it translates from left to right;  𝑢𝑢𝑠𝑠,4 is in a positive sense, as shown in Fig.5.0.1. In the 

figure, 𝑢𝑢𝑜𝑜𝐼𝐼 =  −𝑢𝑢𝑠𝑠,1 ;𝑢𝑢𝑂𝑂𝐼𝐼𝐼𝐼 =  −𝑢𝑢𝑠𝑠,4. 

. 

    Fig.5.0.1 -  Distortional angle 

The definition of twisting angle 𝛾𝛾𝑡𝑡 can be referred to Boswell & Zhang (1985) , 

𝜸𝜸𝒕𝒕 =  �
𝑢𝑢𝑠𝑠,4

𝑏𝑏
+
𝑢𝑢𝑠𝑠,1

ℎ
�                                 (34) 

Where 𝑢𝑢𝑠𝑠,1 and 𝑢𝑢𝑠𝑠,4 denote the tangential displacement of contour 1 (top flange)  and 4 (right web), 
respectively; b is the width of flange; h is the depth of web. 

 

The twisting angle is relatively smaller than the distortional angle as it is the 

difference between the ratio of tangential displacement of the contour over its length. The 

value of twisting angle simply indicates that how much the cross-section has rotated. 

To compare the stress component by warping and distortion, the direct stress 

component and distortional stress component are as follows: 

𝜎𝜎𝑤𝑤 = 𝐸𝐸1 ∙ 𝜖𝜖𝑧𝑧𝑧𝑧     (35) 

𝜎𝜎𝑑𝑑 = 𝐸𝐸1 ∙ 𝜖𝜖𝑠𝑠𝑠𝑠     (36) 
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5.1 Model1 

 

Fig. 5.1.1 -  Deformed shape 

 

Fig. 5.1.2 – 3-dimensional Displacements of Corner A (L = 1500mm, Mz = 1471.5Nm) 

 To discuss the result by the present method, firstly the 3-dimesional displacements 

(𝑢𝑢𝑠𝑠 ,𝑢𝑢𝑛𝑛, 𝑢𝑢𝑧𝑧) of top right corner A were compared with the result by F.E.M. Abaqus model. 
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Table 5.1 Relative Error of 3-Dimensional Displacements 

Max. Displacement 𝑢𝑢𝑛𝑛 (mm) 𝑢𝑢𝑠𝑠 (mm) 𝑢𝑢𝑧𝑧 (mm) 
Present Method 3.643 -1.488 -0.221 

Abaqus 3.748 -1.723 -0.327 
Relative Error 2.3% 13.6% 32.4% 

 

 

Fig. 5.1.3 - Distortional angle along z-axis, L = 1500mm 

 As  there was only Normal (Vertical) displacement of the top flange at 7/8 span 

(1312.5mm) provided by the numerical and experimental result by Boswell & Zhang 

(1985), There is not much reference to compare the spatial displacement of the cross-

section but only using the F.E.M. program with shell elements. The present method adopts 

only one-dimensional analysis while the existing F.E.M. model uses 3-D finite element 

analysis. However, as a coupled deformation of the vertical and horizontal deflections, the 

distortional angle shown in Fig.5.1.3 by the present method is in close agreement with 

Boswell & Zhang (1985) and the F.E.M. model, reflecting a slope-increasing trend as 

further away from the fixed end under a concentrated torsional loading at the free end. 
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The vertical displacement distribution along top flange at 7/8span (Fig.5.1.5) is in 

good agreement with the numerical solution by Boswell & Zhang (1985).   Attention should 

be made that under the distortion deformation, the maximum vertical deflection does not 

occur right at the corners, as the cubic distortion function proposed by Kim & Kim (1999), 

with the rotation continuity of the corner considered the maximum deflection occurs near 

the corners for the flange. On the other hand, the negative 𝑢𝑢𝑧𝑧 indicates the top right corner 

is compressed while positive value indicates the point is under tension. 

The warping displacement of each contour is not shown here, in Fig.5.1.4(a), the 

warping function for Model1 agrees with the F.E.M. result that it is a linear function and 

has a maximum value at corners, zero warping at middle of the contour. For convenience, 

only the warping displacements of top right corner A is compared through the report. The 

linear distortion and warping stresses profile are also shown in Fig.5.1.4(b) and Fig.5.1.4(c). 

In the following sections, only stresses at corners will be discussed. 

 

Fig. 5.1.4(a) - Warping function for Model1 
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 Fig. 5.1.4(b) - Warping Stress at 3l/4(Present)        Fig. 5.1.4(c) -Distortional Stress z = L 

 

 

Fig. 5.1.5. - Vertical Displacement distribution along top flange (wall1) at 7/8 span 

 

Fig. 5.1.6. - Vertical displacement distribution along top flange (wall1) at free end 
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Fig. 5.1.7. - Deformed shape of cross-section at free end 

 

Fig. 5.1.8 - Twisting angle along z-axis, L = 1500mm  

The twisting angle (Fig.5.1.8) from F.E.M. model has a relative smaller value 

compared to the present method, however, the three methods show almost linear increase 

along the longitudinal axis under concentrated opposite point loads at free end. The 

critical consideration governing the design of the box beams will be the stress analysis 

(Fig.5.1.9), the direct warping stress 59.52Mpa(present) and 50Mpa (Balch & Steele 

(1987)) are maximum at the fixed end and zero at the free end as the beam is free to warp 

at its end. The distortional stress is 205MPa (present) and -195.84Mpa (Balch & Steele 
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(1987)) are maximum at the free end and has a flatter slope at first but increases gradually 

along the beam.  

 

Fig. 5.1.9. - Distortional and warping stress at corner B 

 

Fig. 5.1.10. - Stress (mises) of the beam 

59.52

16.09

-195.84

50

-200

-100

0

100

200

0.00 0.25 0.50 0.75 1.00

𝜎𝜎B (MPa)

Z/L

Warping (Present)
Distortion (Present)
Warping (Balch and Steele analytical)
Distortion (Balch and Steele analytical)



49 
 

5.2 Model2 

 With the same dimension as Model1, fixed-supports are provided at both ends.  

With the visualization of Fig.5.2.1. The maximum deflection magnitude takes place at 

mid-span , but only for the distortional deformation (vertical and horizontal), shown in 

Fig.5.2.2, the warping displacement of the top right corner A is zero at mid-span, but 

maximum at 𝑙𝑙/4 (compression) and 3𝑙𝑙/4 (tension). Each of the relative error of maximum 

displacements: 

Table 5.2 Relative error of 3-Dimensional displacements 

 𝑢𝑢𝑠𝑠 (mm) 𝑢𝑢𝑛𝑛 (mm) 𝑢𝑢𝑧𝑧 (mm) 
Present Method -0.106 0.484 0.016 

Abaqus -0.158 0.459 0.048 
Relative error: 32.9% 5.16% 66.6% 

 

  

Fig. 5.2.1(a) - Deformed shape of Model2 
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Fig. 5.2.1(b) - Deformed shape of the cross-section at mid-span 

Once again, the warping displacement shows a large difference between two 

methods, but the behavior of deformation is in agreement with the three-dimensional 

displacements components (Fig.5.2.2) for the present method and F.E.M. analysis. 

 

Fig. 5.2.2 – 3-dimesnional displacements of corner A, (Mz = 3000Nm) 
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Fig. 5.2.3 - Horizontal displacements  (𝑢𝑢𝑛𝑛) of the right web (wall4) at mid-span 

 
Fig. 5.2.4 - Vertical displacement of top flange at mid-span 

The vertical and normal displacement has a maximum value at the corner for this 

model at mid-span which the warping deformation is zero.  The distortional angle has a 
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in agreement with the Abaqus result. 
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Fig. 5.2.5 -  Distortional Angle distribution along z-axis, L = 1500mm 

 

 

Fig. 5.2.6 -  Twisting angle distribution, L = 1500mm 

 The twisting angle along the beam changes linearly with the present method but a 

sharp increase at mid-span using F.E.M. Abaqus analysis, the relative error is 47.7 %.  
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Fig. 5.2.7 - Distortional and warping stress distribution at B 

 

Fig. 5.2.8  - Stress (mises) of the beam 

 The distribution of the distortional and warping stress is shown in Fig.5.2.7 and 

Fig.5.2.8, the distortion stress has its critical values at mid-span and at the supports while 

the warping stress is maximum at the mid-span at which there is not any warping 

deformations. Both of the stresses change linearly along the beam rather than a curve. 
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5.3 Model3 

 

 

Fig. 5.3.1 - Deformed shape  

Table 5.3 Relative error of 3-Dimensional displacements 

 𝑢𝑢𝑠𝑠 (mm) 𝑢𝑢𝑛𝑛 (mm) 𝑢𝑢𝑧𝑧 (mm) 
Present Method -0.897 1.324 -0.087 

Abaqus -1.009 1.248 -0.167 
Relative error: 11.1% 6.1% 47.9% 

 

 With a square cross-section, the axial decay effect of the deflections and stresses 

are significant than a cross-section with higher flange-web ratio. Under the same pair of 

opposite point loads, the three-dimensional displacements are smaller than Model 1 

which has a wider flange. From Fig.5.3.1 and Fig.5.3.2 the beam deformations almost 

start from mid-span by the Abaqus result. Furthermore, the distortional angle increases 

rapidly after mid-span but resulting in 0.03010(rad) which has a relative error of 1.6% 

compared to the present method (0.02961 rad). The three-dimensional displacements 

show similar trends but also start to increase further away from the support. With the 

significant axial decay effect for the square cross-section, Model 4 has a lower flange-

width ratio equals to 1:2 to further study the behavior of distortional deformation. 
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Fig. 5.3.2(a) 3-Dimesional displacements of top right corner A, (L = 1500mm, 

b=h=150mm)

 
Fig. 5.3.2(b) 3-Dimesional displacements of top right corner A, (L = 1500mm, 

b=h=150mm) 
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Fig. 5.3.3 - Distortional Angle distribution, (L = 1500mm, b=h=150mm) 

 

Fig. 5.3.4 - Twisting angle distribution, (L = 1500mm, b=h=150mm) 
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Fig. 5.3.5 - Distortion and warping stress distribution of corner B, (L = 1500mm, 

b=h=150mm) 

 
Fig. 5.3.6 - Stress(misses) of the beam 
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  (-196.61MPa) compared to Model1 (-195.84MPa). On the other hand, the warping stress 

(max : 16.89MPa) along the beam is significantly smaller than Model1 (max: 59.52MPa), 

together with the overall 3-dimesional deformations. 

5.4 Model4 

 

Fig. 5.4.1 - Deformed shape of the beam 

 

Table 5.4 Relative error of 3-dimesional displacements 

 𝑢𝑢𝑠𝑠 (mm) 𝑢𝑢𝑛𝑛 (mm) 𝑢𝑢𝑧𝑧 (mm) 
Present Method -0.718 1.005 -0.067 

Abaqus -0.713 0.684 -0.119 
Relative Error 0.696% 31.9% 43.6% 

 
 

 To further analyze the effect on the deformation of the beam with different flange-

width ratio, a flange-width ratio equals to 1:2 is used for Model4. From Fig.5.4.2(a), the 

tangential displacement has a positive value near the support and then becomes negative 

progressing to the free end. The axial decay effect is more significant than a square section 

which the abaqus model show nearly zero horizontal and warping deformations at mid-



59 
 

span in Fig.5.4.2(b). Furthermore, the overall displacements of the cross-section are smaller 

with lower flange-width ratio, observations can be made that when using a wider flange 

with fixed web heights, more distorted cross-section and larger displacements are expected 

under same torsional loading. Note that the changing sense of 𝑢𝑢𝑠𝑠  in Fig.5.4.2(a) and 

Fig.5.4.2(b) indicates that the cross-section does have a uniform distorted shape along the 

longitudinal axis. Fig5.4.3 shows that the top flange translates from right to left for a 

positive 𝑢𝑢𝑠𝑠  value and the beam sway back to the right at the free end (Fig.5.4.4). A 

significant error occurred when analyzing lower flange-web ratio models due to the axial 

decay effect. 

               

Fig. 5.4.3 Horizontal displacements at 3L/10    Fig. 5.4.4 Distorted shape at the free end  
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Fig. 5.4.2(a) 3-dimensional displacements of corner A (Present Method),(L = 1500mm, b 

= 100mm, h = 150mm) 

 
Fig. 5.4.2(b) 3-dimensional displacements of corner A (ABAQUS),( L = 1500mm, b = 

100mm, h = 150mm) 

Us =0.042

-0.718

-0.033

0.276

1.005

-1.200

-0.800

-0.400

0.000

0.400

0.800

1.200

0 0.25 0.5 0.75 1

u(mm)

Z/L

Us (Present)

Uz(Present)

Un(Present)

-0.119

0.684

Us = 0.088

-0.713

-1.200

-0.800

-0.400

0.000

0.400

0.800

1.200

0 0.25 0.5 0.75 1

u(mm)

Z/L

Uz(F.E.M.)

Un (F.E.M.)

Us (F.E.M.)



61 
 

  
Fig. 5.4.3 - Distortional angle distribution along z-axis 

 

Fig. 5.4.4 - Twisting Angle distribution zlong z-axis 
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Fig. 5.4.5 - Distortion and warping stress of corner B 

The distortional angle distribution along the beam is in fair agreement for the two 

results compared to Model3. The maximum warping does not occur at the fixed support 

(5.36MPa) but at the mid-span (12.35MPa). The Distortion stress has a maximum value at 

the free end (-239.69MPa) and zero at support. The major differences between Model1, 

Model3 and Model4 under same concentrated loading is that with a narrower flange the 

warping stress decreases but the distortion stress increases and a smaller overall 

deformation with the increasing axial decay effect. 
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Fig 5.4.4 Stress (mises) of the beam 

5.5 Model5 

In model5, thicker walls (t = 6mm) are used, as shown in Fig.5.5.1, vertical and 

horizontal deformations are much smaller than using thickness = 3.18mm. The distortional 

angle (0.017rad) is also decreased more than half of the Model(0.045 rad) 

Form Table.5.5.1 below, the overall deformation can be reduced more than half of Model1 

when the thickness of the wall is doubled. 

Table 5.5 Difference between Model1(t=3.18) and Model4(t=6) 

Ratio = 
6/3.48=1.89 

𝑢𝑢𝑠𝑠 𝑢𝑢𝑛𝑛 𝑢𝑢𝑧𝑧 𝛾𝛾𝑑𝑑 𝛾𝛾𝑡𝑡 𝜎𝜎𝑤𝑤 𝜎𝜎𝑑𝑑 

Model1 
(t=3.18mm) 

-1.488 3.643 -0.221 0.045 0.00111 50 -195.84 

Model5 
(t=6mm) 

-0.526 1.431 -0.089 0.017 0.00063 21.65 -140.13 

% Decrease 64.6% 60.72% 59.7% 62.2% 43.2% 56.7% 28.4% 
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Fig. 5.5.2 – 3-dimensional displacements of cornerA 

(L=1500mm,b=300mm,h=150mm,t=6mm) 

 
Fig. 5.5.3 Vertical Displacement(Un) distribution along top flange(wall1) at z = L 
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Fig. 5.5.4 Horizontal displacement(Un) distribution along right web(wall4) at z = L 

 

Fig. 5.5.6 Distortional angle along z-axis, L= 1500mm 

 The distortional angle and twisting angle (0.017,0.00633 rad)obtained are 

proportionally less than Model1 which has a thickness = 3.18mm (0.045,0.00111 rad). Also, 

the distortional and warping stresses can also be reduced for the box beam design if a 

thicker wall is used. However for the thin-walled analysis, for t greater than 1/10 of the 

wall length, the theoratical solutions may cause a significant error. 
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Fig. 5.5.7 Twisting angle along z-axis, L = 1500mm 

 

Fig. 5.5.8 The Distortion and warping stress distribution of corner B, L = 1500mm 

Fig.5.5.8 shows the distortion and warping distribution along beam, the maximum 

stresses can be reduced under the same loading by increasing the thickness of the walls. 

Although the deformations can be reduced using a narrower flange but ideally a wider 

flange is desired as larger loading area can be provided. As an alternative the stresses can 

be reduced with a thicker contour to obtain smaller deformations. 
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5.6 Model6 

 

Fig. 5.6.1 3-Dimensional Displacements of corner A 

 

Fig. 5.6.2 Vertical displacement at 7/8span of Model1 and Model6 
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From Fig.5.6.1, the slopes of the change of the 3-dimensional deformations reflect 

a linear increase along the beam but a similar trend with Model1. The vertical displacement 

distribution along top flange at 7𝑙𝑙 /8 is also compared to Model1, though, the vertical 

(Fig.5.6.2) and horizontal displacements (Fig.5.6.3.) changes more linearly than Model1, 

so as the horizontal displacements.   

 
Fig. 5.6.3 Horizontal displacement distribution along right web(wall1) at free end 

 

Fig. 5.6.4 Distortional angle distribution along z-axis 
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Fig. 5.6.5 Twisting angle distribution 

 The distortional angle increases linearly and has a maximum value of 0.00844 

rad(Fig.5.6.5). The distributed load has equivalent vertical loading as Model1. The 

Twisting angle is a concave-down curve as it is increasing slower and slower towards the 

free end. Considering the stresses, the warping stress is now a concave-up curve rather than 

concave-down from the previous models while the distortion stress shows a similar change 

as Model1. For practical situations, loading on a box girder does not always concentrate on 

the free end and the girder is not likely to be a cantilever. However, the torsional loading 

has a similar effect with vertical loadings on a beam under comparison with concentrated 

and distributed loadings. 
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Fig. 5.6.6 Distortion and warping stress distribution of corner B 
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Conclusion and Suggestion 

 The torsional warping and distortion deformation of thin-walled box beams under 

torsional loading had been studied in the project. The tangential, normal and warping 

displacements of the contours can be estimated using the one-dimensional finite element 

theory by selecting appropriate pre-assigned functions. Under concentrated or distributed 

torsional loading, the warping displacement is relatively smaller than the distortional 

displacements and significant errors occurred when calculating the warping deformations 

which may due to error in computer programming. For general design approach, a lower 

flange-web ratio gives smaller warping stress but a larger distortional stress compared to a 

higher flange-web ratio section.   

 The distortional deformation of flange-web ratio lower than or equals to one were 

also predicted differently with those have higher flange-web ratio. The distortional angle 

varies along the beam with changing senses for certain cases. The continuity condition of 

the rotation of corners and the pre-assigned function could be used to predict the general 

warping and distortion deformation of thin-walled box beams. Furthermore, the result 

shown that thin-walled box beams have a high torsional rigidity as the twisting deformation 

is relatively small compared to the distortional deformation. 

In future study, effort could be made on studying curved thin-walled girders under 

unsymmetrical loadings and the accuracy of the thin-walled theory with varying thickness 

could be verified.  



72 
 

References 

• Balch, C.D. and Steele, C.R., 1987, “Asymptotic Solutions for Warping and 

Distortion of Thin-walled Box Beams”, ASME Journal of Applied Mechanics, 

Vol.54, pp. 165-173. 

• Boswell,L.F., and Zhang,S.H., 1983,  “A Box Beam Finite Element for the Elastic 

Analysis of Thin-Walled Structures”, Thin-Walled Structures, Vol.1 pp.353-383.      

• Boswell,L.F., and Zhang,S.H., 1985,  “An experimental Investigation of the 

Behavior of Thin-walled Box Beams”, Thin-Walled Structures, Vol.3 pp.35-65.      

• J.H. Kim, Y.Y. Kim, ,1999 , “Analysis of Thin-walled Closed Beams with 

General Quadrilateral Cross-Sections”, ASME, p.904-p.915/Vol. 66 

• Vlasov, V.Z., 1961, Thin-walled Elastic Beams, Isarel Program for Scientific 

Translations, Jerusalem. 

• Wright, R. N., Abdel-Samad,S.R., and Robinson, A.R., 1968, “BEF” Analogy for 

Analysis of Box Girders,” J.Struct. Div., ASCE, Vol.94, (ST7), pp.1719-43 

 


	Ng Chi Kin
	Final Year Project Report submitted in partial fulfillment
	of the requirement of the Degree of
	Bachelor of Science in Civil Engineering
	Faculty of Science and Technology
	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	Table of Contents
	LIST OF FIGURE
	LIST OF TABLE
	List of symbols
	Chapter 1  Introduction
	1.1 Background
	1.2 Introduction to Warping and Distortion Deformation
	1.3 Objectives and Scope

	Chapter 2 Literature Review
	Chapter 3 Methodology
	3.1Basic Field Equations and Assumptions
	Assumptions:
	Field equations:

	3.2 Warping and Distortion Functions
	Warping Function  ,𝜓-𝑧-𝑈.:
	Distortion function ,𝜓-𝑠𝑖-𝜒., ,𝜓-𝑛𝑖-𝜒.

	3.3 One-Dimensional Analysis
	3.4 Finite Element Theory

	Chapter 4 Finite element modeling
	4.1 Model1-Cantilever box beam subjected to pair of opposite concentrated loads
	Modeling in ABAQUS (F.E.M.)

	4.2 Model2- Fixed-supported box beam subjected to pair of opposite concentrated loads
	4.3 Model3 - Cantilever square box beam subjected to pair of opposite concentrated loads
	4.4  Model4-Cantilever box beam subjected to pair of opposite concentrated loads
	4.5 Model5-Cantilever box beam subjected to pair of opposite concentrated loads
	4.6 Model6- Cantilever box beam subjected to pair of opposite distributed loads

	Chapter 5 Result and Discussion
	5.1 Model1
	5.2 Model2
	5.3 Model3
	5.4 Model4
	5.5 Model5
	5.6 Model6

	Conclusion and Suggestion
	References

