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ABSTRACT 

The behavior of a cable truss is generally considered as being analytically nonlinear. 

This thesis follows Irvine’s procedures to derive the nonlinear and linear analytical 

solutions of cable truss systems, taking into account the geometry, pretension, boundary 

condition and temperature difference. After the final closed-form solution is achieved, 

the resultant increase in horizontal component of cable force in both top and bottom 

chords of a cable truss can be solved correspondingly, with which the deflection at 

midspan of the cable truss can be further figured out. This kind of work is done by 

transforming the solution into computer program. With the help of numerical method, 

it is found there is obvious difference between the results of nonlinear solution and 

linear solution. Besides, 10 different cases are assumed and solved to see the effect that 

parameters related to the solutions will have on the difference of the result from those 

two kinds of approaches, in which the considered parameters include the span-to-sag 

ratio, span-to-camber ratio, pretension in chords and temperature difference in both top 

and bottom chords. It is found the difference of resultant horizontal force in bottom 

chord for a biconcave cable truss from the two approaches and the difference of resultant 

force in top chord for a biconvex cable truss from the two approaches are most sensitive 

to the change of any of the considered parameters. However, it should be noted all the 

results and the conclusions are obtained within a limited range. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Cable trusses, as one of the suspension systems, are becoming quite popular nowadays 

since it can be constructed rapidly and can easily span over a large distance or area.  

Also, with the development of production for steel cable strands and the availability of 

numerical programs to handle more complex analysis of cable configurations, cable 

truss tends to show its advantage in cost compared with other types of constructions. 

Due to the light weight and flexibility of cable trusses, large displacements can occur 

when being under loadings. Since the stresses in cables are related to the deflection, the 

overall stiffness of the structure will change as the geometry changes. So cable trusses 

are generally regarded as geometrically nonlinear structures. Although some techniques 

like prestressing are usually used to make sure the deflection is well under control, 

nonlinear analysis is still preferred to allow for more accurate results. 

 

1.2 Basement 

This thesis is mainly based on the theories and approaches proposed by Irvine (1981). 

For simplicity, he assumed the cables to be flat with relatively low sag, which is usually 

true for structural purpose. Some detailed theories were then derived to provide explicit, 

consistent methods for finding static response to applied loads accurated to the third 

order of small quantities. 

He first set up a profile equation of the cable considering the unit weight and the 

resulting horizontal component of cable tension. Some terms were ignored in 

comparison to unity due to the overall flat profile as assumed. Cable length equation 
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was subsequently derived taking into account the sag and the effects of cable stretch, 

together with the sag equation at the midspan of the cable before any load is applied. 

Next, a point load, as example, was added to the cable to explain the response. The 

shear force equilibrium inside the cable after the point load is applied was checked and 

further integrated to give the equations for the additional vertical deflection. The 

differential equations of cable elements before and after the load is applied were 

illustrated and combined with Hooke’s law to relate the changes in cable tension to the 

changes in cable geometry. After necessary transformations and integrations, a 

dimensionless cubic equation containing only one unknown, the increment in the 

horizontal component of cable tension, was yield as the final nonlinear solution. In 

addition to this, Irvine (1981) also provided linearized solutions for the point load 

problem. He neglected all second-order terms that appear in the differential equations 

of equilibrium and in the cable equation, which resulted in the removal of some terms 

occurred in the nonlinear solution. At the end, as comparison, he spent some words 

discussing the cases of which linearized solutions were valid. 

The derivation of responses to a uniformly distributed load was quite similar to the 

one for a point load, only with some formations of equations changed. 

In this thesis, similar procedures of derivation will be performed, but for a 

suspended cable truss case with its self-weight ignored. 

 

1.3 Overview 

In this thesis, the nonlinear analytical approach for a single suspended cable proposed 

by Irvine (1981) is adopted and extended to the cable truss case to give the 

corresponding nonlinear analytical solution under a uniformly distributed load, which 

will be further compared to the linear one to see the difference. In the coming literature 
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review part, a detailed review of cable-related and cable truss-related works will be 

performed with some comments. The procedures to derive the final nonlinear and linear 

solutions of this thesis will be clearly described in the next methodology part. For the 

results and discussion part, some related parameter values will be assumed in different 

cases and put into the solutions obtained for further analysis, so as to find out the effect 

each parameter will have on the difference of results of nonlinear and linear approaches. 

In the final conclusion and recommendations part, some important points in the thesis 

will be restated to relate all the works together, and some recommendations will also be 

provided on the further works that can be practiced based on this thesis. 
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CHAPTER 2  LITERATURE REVIEW 

2.1 Linear Approach 

To analyze cable trusses, Zetlin (1963) proposed a linear approximate equation to 

calculate the force and displacement under uniformly distributed loads over the entire 

span. As this equation is derived based on the initial geometry of the cable truss, 

deflection after loads are applied has no effect on the force result, which may cause 

significant error when large deflection occurs. Mollmann (1970) suggested an 

approximate equation similar to Zetlin’s with more consideration on unsymmetrical 

loadings, flexible supports and temperature changes. Some other methods (Thornton 

and Birnstiel 1967; Krishna and Sparkes 1968; Buchholdt 1969; Schleyer 1969) can be 

found to analyze cable trusses using mostly linear models and iterative method. 

However, these methods are still not completed since many structural parameters are 

ignored, such as support flexibility, cable size, prestressing force, sag-to-span ratio, etc., 

all of which could have effects on the final stress and deflection of the cable truss. 

Besides, based on linear static analytical model, simple approaches for preliminary 

design of cable structures are discussed in further works (Baron and Venkatesan 1971; 

Urelius and Fowler 1974; Moskalev 1980; Kadlcak 1995; Buchholdt 1999). 

 

2.2 Nonlinear Approach 

As mentioned before, nonlinear analysis is still preferred for the cable truss in some 

cases. Most of recent works (Jayaraman and Knudson 1981; Kmet 1994; Levy and 

Spillers 1995; Talvik 2001; Gasparini and Gautam 2002) related to this kind of analysis 

are based on the finite element method, which will be simply introduced later, and the 

solving of resulting nonlinear algebraic equations by numerical methods. However, 

only a few published analytical studies focus on the nonlinear solutions. Irvine (1981) 
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proposed some detailed procedures to nonlinearly relate the physical properties and 

geometrical quantities of the cable to the final deflection and the inside stress, together 

with a simple linear approach. By transforming nonlinear loading parameters of cable 

trusses into linear ones, Rakowski (1983) tried to solve nonlinear analytical solutions 

by linear method. Kassimali and Parsi-Feraidoonian (1987) studied some nonlinear 

behaviors of cable trusses to figure out the ultimate strength of prestressed cables, taking 

into account the effects of displacement, material properties, etc.  

 

2.3 Numerical Approach 

Numerical method is also a popular approach to analyze the cable truss, as complex 

mathematical problems can arise during the analysis. There are mainly two ways to 

analyze cable members numerically. One is based on the expressions of elastic catenary, 

of which the theory was first proposed by O’Brien and Francis (1964). Peyrot and 

Goulois (1978) later presented the corresponding elastic catenary element. More related 

developments of elastic catenary can be found in other works (Jayaraman and Knudson 

1981; Wang et al. 2003; Andreu et al. 2006; Yang and Tsay 2007; Such et al. 2009). 

The other is based on finite element technique, in which three different types of 

elements are mainly adopted. The first type is two-node element, or straight element. 

This is the most common one and was developed in several works (Argyris and Scharpf 

1972; Gambhir and Batchelor 1979; Ozdemir 1979; Broughton and Ndumbaro 1994). 

Some studies (Coyette and Guisset 1988; Ali and Abdel-Ghaffar 1995; Chen et al. 2010) 

also used the second type, multi-node element, to avoid using many two-node elements 

and to give more accurate results. The last type is curved element with rotational degrees 

of freedom. Gambhir and Batchelor (1977) proposed this type of element to take the 

continuity of slopes into consideration. 
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CHAPTER 3 METHODOLOGY 

3.1 General Analytical Model 

The geometries of the cable trusses considered in this thesis are shown below, with 

biconcave one in Fig. 3.1 and biconvex one in Fig. 3.2. The profiles of the top and 

bottom chords are determined by assuming them as parabolas with three points known 

and are calculated as 

 

 

 

4 1

4 1

t t t t

b b b b

x x
z d b b

l l

x x
z d b b

l l

 
    

 

 
    

 

  (3.1) 

where l   span of the cable truss, m. For the biconcave truss, sag of the top cable and 

camber of the bottom cable are defined as 
t ts b d   and 

b bc b d   respectively. For 

the biconvex truss, sag of the bottom cable and camber of the top cable are defined as 

b bs d b   and 
t tc d b   respectively. 

 

 

Fig. 3.1. Geometry for biconcave cable truss 



7 

 

 

Fig. 3.2. Geometry for biconvex cable truss 

 

For convenience, the subsequent analysis will be performed under the following 

assumptions: (1) Cables are totally flexible so that only tension occurs.  (2) All the small 

weight of the cables and the spacers will not be considered. (3) The slopes of the chords 

remain small when experiencing deformation. (4) Vertical spacers or ties of the trusses 

will be replaced by a continuous diaphragm with inextensible vertical elements, as 

shown in the figures. (5) The small longitudinal movements of the chords due to the 

vertical deflection will occur freely. 

The derivation of the final solution will be performed with the biconvex cable truss 

under uniformly distributed load over the entire span, while the example results will be 

obtained considering both biconcave truss and biconvex truss since the solution can be 

applied equally to both types. 
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3.2 Nonlinear Analytical Solution 

Since the considered biconvex cable truss experiences a uniformly distributed load q  

on the entire span (see Fig. 3.3), based on the knowledge of structure analysis, the shear 

force at cross section x  from the support is / 2(1 2 / )Q ql x l  . Referring to Irvine 

(1981), the vertical equilibrium at cross section further requires that 

  
 

 
 

0 0

2
1

2

b t

b b t t

d z w d z w ql x
H H H H

dx dx l

   
      

 
  (3.2) 

where 
0bH  and 

0tH   horizontal components of the pretensions in the bottom and top 

chords, kN; 
bH  and 

tH   additional horizontal components of cable tension due to 

the applied load, kN; 
bz  and 

tz   initial profiles of the chords given by Eq. (3.1), m; 

w   additional vertical deflection, m. The internal equilibrium of the unloaded truss, 

expressed as 
0 0/ /b b t tH dz dx H dz dx , can be obtained by picking out 

bH , 
tH , w

and shear force in Eq. (3.2). Taking this into account, Eq. (3.2) can be simplified into 

 

 

Fig. 3.3. Vertical equilibrium of biconvex cable truss 
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Fig. 3.4. Displacements of elements of bottom and top cables in biconvex truss 

 

  0 0

2
1

2

b t
b b t t b t

dz dzdw ql x
H H H H H H

dx dx dx l

 
          

 
  (3.3) 

After the boundary conditions being applied, Eq. (3.3) can be integrated directly to 

obtain the overall vertical deflection equation for biconvex cable truss 

 

 

 

2

2

0 0

2

2

1
1 4

2

4

b b b

b b t t

t t t

ql x x x
w x H d b

H H H H l l l

x x
H d b

l l

   
        

       

 
     

 

  (3.4) 

As 
bH  and 

tH  are necessary for the final solution, Hooke’s law is made use of 

to find the relationship between the changes in cable tensions and the displacements of 

chords. For a biconvex truss, the geometry of these displacements are shown in Fig. 3.4. 

Considering 
bds  and 

tds  as the original lengths of the bottom and top elements, and 

bd s  and td s  as their new length, then 2 2 2

b bds dx dz  , 
2

2 2( ) ( )b b bds dx du dz dw    , 

2 2 2

t tds dx dz  , and 
2

2 2( ) ( )t t td s dx du dz dw    , where 
bu  and tu   longitudinal 
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displacements of the elements, m. For flat-sag cables, the fractional changes in their 

lengths (use bottom chord as example) can be first derived as 

 

   
2 2

2

2 2 2 2

2

2 2

1

2 2
1

1 2 2 1

b b bb

b b

b b b b

b

b b b

b b b b b b

dx du dz dwd s ds

ds ds

dx dz du dx dwdz dw du

ds

du dz dudx dw dw

ds ds ds ds ds ds

  
 

    
 

   
        

   

  (3.5) 

Based on Taylor series, function in the form of ( ) 1f x x   can be corrected to the 

second item to give ( ) (0) 1 / 2f x T x   , thus Eq. (3.5) can be transformed into 

 

2 2

2 2

1
1 2 2 1

2

1 1

2 2

b b b b b

b b b b b b b

b b b

b b b b b b

d s ds du dz dudx dw dw

ds ds ds ds ds ds ds

du dz dudx dw dw

ds ds ds ds ds ds

    
         
     

   
      

   

  (3.6) 

The term 21
( / )

2
b bdu ds  in Eq. (3.6) is ignored in the following analysis due to its 

relative small value compared to the others. The fractional change in length for the top 

chord can be derived in the same manner and together gives  

 

2

2

1

2

1

2

b b b b

b b b b b b

t t t t

t t t t t t

d s ds du dzdx dw dw

ds ds ds ds ds ds

d s ds du dzdx dw dw

ds ds ds ds ds ds

 
    

 

 
    

 

  (3.7) 

According to Hooke’s law, here requires that  

 

b b b b

b b b

t t t t

t t t

d s ds H ds

ds E A dx

d s ds H ds

ds E A dx

 


 


  (3.8) 
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where bE  and tE   moduli of elasticity of the bottom and top chords, kN m-2; and bA  

and tA   cross-sectional areas of the cable chords, m2. 

If the effects of a uniform temperature change of 0b b bT T T    and/or 0t t tT T T    

(where T  and 0T  = the design and initial temperatures, ℃ or K) are considered, terms 

Tb bT    and Tt tT    need to be added to the elemental equations, where    

coefficient of expansion, ℃-1 or K-1. Based on Eq. (3.7) and Eq. (3.8), cable equations 

for the bottom and top elements can be expressed as 

 

2

2

1

2

1

2

b b b b
b

b b b b b b b

t t t t
t

t t t t t t t

H ds du dzdx dw dw
T

E A dx ds ds ds ds ds

H ds du dzdx dw dw
T

E A dx ds ds ds ds ds





 
      

 

 
      

 

  (3.9) 

After respective multiplication of Eq. (3.9) by 2( / )bds dx  and 2( / )tds dx , one obtains 

 

3 2 2

3 2 2

1

2

1

2

b b b b b
b

b b

t t t t t
t

t t

H ds ds du dzdw dw
T

E A dx dx dx dx dx dx

H ds ds du dzdw dw
T

E A dx dx dx dx dx dx





      
         

    

      
         

    

  (3.10) 

Eq. (3.10) can be further integrated to give the form 

 

   

   

2

0 0

2

0 0

1
0

2

1
0

2

l l
b eb b

b Tb b b

b b

l l
t et t

t Tt t t

t t

H L dzdw dw
T L u l u dx dx

E A dx dx dx

H L dzdw dw
T L u l u dx dx

E A dx dx dx





    
        

  

    
        

  

 

 

  (3.11) 

where ( )bu l  and (0)bu  and/or ( )tu l  and (0)tu   longitudinal movements of the bottom 

and top supports, respectively, m. The left side members TbL  and TtL  of Eq. (3.11) can 

be determined directly, while ebL  and etL  can be calculated using Taylor series and 

corrected to the second item, of which the procedure is similar to the one from Eq. (3.5) 
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to Eq. (3.6). These members characterize the lengths of the unloaded cables and are 

given by 

 

2

,
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  
   

   

   
     

  

  
   

   

 
  

 

  
   

   


 





 





2

0

2

, ,
1 8

l

b t b t

dx

d b
l

l

 
  
   

  
   

   

   (3.12) 

where the terms are defined in Fig. 3.1 and Fig. 3.2. 

Because /dw dz  is continuous along the span, the integral terms on the right side of 

Eq. (3.11) can be evaluated by integration by parts as 

 

2 2

, , , ,

2 20 0 0
0

2 2 2

2 20 0 0
0

1 1 1 1

2 2 2 2

l
l l l

b t b t b t b t

l
l l l

dz dz d z d zdw
dx w wdx wdx

dx dx dx dx dx

dw dw d w d w
dx w wdx wdx

dx dx dx dx

   
      

   

   
      

   

  

  

  (3.13) 

With Eq. (3.13) derived, Eq. (3.11) can be rewritten as 



13 

 

 

2 2

2 20 0

2 2

2 20 0

1

2

1

2

l l
b eb b

b Tb b

b b

l l
t et t

t Tt t

t t

H L d z d w
T L wdx wdx B

E A dx dx

H L d z d w
T L wdx wdx B

E A dx dx






     


     

 

 

  (3.14) 

where parameters bB  and tB  characterize the boundary conditions at the supports of the 

bottom and top cables, respectively, in the longitudinal direction. For unmovable 

supports 0bB   and 0tB  . For movable supports, if horizontal movements occurs at 

the corresponding ends of the truss, then ( ) (0)b b bB u l u   and ( ) (0)t t tB u l u  . For 

elastic supports in the horizontal direction (0) ( )b xb xbB f f l   and (0) ( )t xt xtB f f l  , 

where the horizontal supports flexibilities of xbf  and/or xtf  occur at corresponding 

ends of the truss. 

Substituting Eq. (3.1), Eq. (3.4) and Eq. (3.12) into Eq. (3.14) and performing the 

necessary integration, a coupled system of cubic cable equations for bH  and tH  can 

be found. This nonlinear closed-form solution can be put directly into software 

MATLAB 2016b to obtain the answers with corresponding values of parameters given 

and the embedded fsolve function. The program code will be given in the appendix. 

 

3.3 Linear Analytical Solution 

The model is linearized by neglecting all second-order terms that appear in the 

differential equations of equilibrium and in the cable equation. This requires the 

removal of the term /bH dw dx  and /tH dw dx  from Eq. (3.3) and 2

0

1
( / )

2

l

dw dx dx  

from Eq. (3.11). As a consequence the deflection changes into 
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   
        

    

 
     

 

  (3.15) 

and the final cable equations become 

 

2

20

2

20

l
b eb b

b Tb b

b b

l
t et t

t Tt t

t t

H L d z
T L wdx B

E A dx

H L d z
T L wdx B

E A dx






    


    





  (3.16) 

Substituting Eq. (3.1), Eq. (3.12) and Eq. (3.15) into Eq. (3.16) and performing 

necessary integration, a coupled system of linear cable equations for bH  and tH  can 

be obtained. Similarly, these equations can be put directly into MATLAB 2016b to get 

the answers. The corresponding program code will also be shown in the appendix. 

  



15 

 

CHAPTER 4 RESULTS AND DISCUSSION 

After the nonlinear and linear solutions being derived, some cases will be studied to 

further discuss about the effects of parameters in solutions on the final results. 

 

4.1 Case Study 1: Different Span-to-sag Ratios of Top Chord for a Biconcave Cable 

Truss 

Here a biconcave cable truss as shown in Fig. 3.1 is considered (Fig. 3.1 is put here 

again for convenience and better understanding, but will not be included in the list of 

figures), which have a span 60l  m and cross-sectional areas of the bottom and top 

cables 31.3 10bA   m2 and 32.0 10tA   m2. Both cables has the moduli of elasticity 

of 81.5 10b tE E   kN m-2. A vertical uniformly distributed load 10.0q  kN m-1 is 

applied over the entire span. In the closed-form analysis, the ties are replaced by a 

continuous diaphragm as described in the assumptions. 

 

 

Fig. 3.1. Geometry for biconcave cable truss 
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Eight different span-to-sag ratios of the top carrying cable, /l s   7.5, 10, 12.5, 15, 

17.5, 20, 22.5, and 25 are considered. The span-to-camber ratio of the bottom stabilizing 

cable is kept constant at /l c 25 for all mentioned cases. The following data for the 

geometrical quantities are specified: 0.5b td d  m, 2.9bb  m, and tb   8.5, 6.5, 5.3, 

4.5, 3.93, 3.5, 3.17, and 2.9 m, of which bb  is the sum of bd  and c  while tb  is the sum 

of td  and s . The initial horizontal component of pretension in the bottom chord is 

0 600.0bH  kN. Considering the internal equilibrium of the initial prestressed unloaded 

truss, the initial horizontal component of pretention in the top chord can be determined 

as 0 0 /t bH H c s . 

To find out vertical deflections w  in the midspan of the truss under applied load, 

/ 2x l  is taken into Eq. (3.4) and Eq. (3.15) to give corresponding nonlinear form 

    
2

0 0

1

8
b b b t t t

b b t t

ql
w H d b H d b

H H H H

 
     

     
  (4.1) 

and linear form 

    
2

0 0

1

8
b b b t t t

b t

ql
w H d b H d b

H H

 
     

  
  (4.2) 

 

Table 4.1. Analytical results for Case Study 1 

l / s  
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

7.5 0.4934 0.6867 0.1612 0.4873 0.6926 0.1647 

10 0.4377 0.8705 0.2501 0.4219 0.8823 0.2601 

12.5 0.3802 1.0264 0.3454 0.3492 1.0434 0.3663 

15 0.3254 1.1575 0.439 0.2747 1.1758 0.4752 

17.5 0.2773 1.2678 0.5299 0.2027 1.2818 0.5803 

20 0.2344 1.3618 0.6121 0.1364 1.3653 0.6772 

22.5 0.1975 1.4432 0.6859 0.0774 1.4308 0.7634 

25 0.1662 1.515 0.7512 0.0264 1.4825 0.8379 
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Fig. 4.1. Horizontal force in bottom chord vs. span-to-sag ratio in top chord for a 

biconcave cable truss 

 

 

Fig. 4.2. Horizontal force in top chord vs. span-to-sag ratio in top chord for a 

biconcave cable truss 
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Fig. 4.3. Deflection at midspan vs. span-to-sag ratio in top chord for a biconcave cable 

truss 

 

Horizontal components of cable forces in the bottom and top chords are calculated 

as 0b b bH H H   and 0t t tH H H  , respectively, since the analytical solutions are 

derived for biconvex truss. Based on Eq. (4.1), Eq. (4.2) and the solutions derived before, 

the analytical results for bH , tH  and deflection w  are calculated and tabulated in Table 

4.1. Graphs are made to better compare the results obtained from nonlinear and linear 

solution (see Fig. 4.1, Fig. 4.2 and Fig. 4.3), from which it is obviously shown that there 

are differences between the responses of the investigated cable trusses obtained from 

nonlinear and linear analyses. More detailed percent error of the results obtained by the 

linear solution compared to the nonlinear one is shown in Table 4.2 and is calculated 

based on the equation 

 
Nonlinear Result Linear Result

Percent Error 100%
Nonlinear Result


    (4.3) 

The positive percent errors indicate that the results of the linear solution are 

underestimated compared with the nonlinear one, while the negative values occur when 

the linear results are overestimated. 
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Table 4.2. Percent error of results for Case Study 1 (%) 

l / s 7.5 10 12.5 15 17.5 20 22.5 25 

Hb 1.2 3.6 8.2 15.6 26.9 41.8 60.8 84.1 

Ht -0.9 -1.4 -1.7 -1.6 -1.1 -0.3 0.9 2.1 

w -2.2 -4.0 -6.1 -8.2 -9.5 -10.6 -11.3 -11.5 

 

 

Fig. 4.4. Percent error of results vs. span-to-sag ratio in top chord for a biconcave 

cable truss 

 

The three curves shown in Fig. 4.4 illustrate that, with the span-to-sag ratio of the 

top chord increasing and all other parameters remain the same, the horizontal 

component of cable force in bottom chord obtained by linear solution becomes more 

and more underestimated, the deflection at midspan becomes somewhat more 

overestimated, while the difference of horizontal force in top chord obtained by two 

solutions remains almost the same. 
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4.2 Case Study 2: Different Span-to-camber Ratios of Bottom Chord for a 

Biconcave Cable Truss 

Using the same model as Case Study 1, but this time the span-to-sag ratio of top chord 

is kept at /l s  25, while eight different span-to-camber ratios of bottom chord, /l c   

7.5, 10, 12.5, 15, 17.5, 20, 22.5, and 25 are adopted for a biconcave cable truss. Some 

values of related parameters are specified as: 0.5b td d  m, b bb d c   and 

t tb d s   for corresponding cases. 

 

Table 4.3. Analytical results for Case Study 2 

l / c 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

7.5 0.1726 2.2355 0.214 0.1728 2.2224 0.2111 

10 0.0989 1.8604 0.3208 0.0934 1.8324 0.3156 

12.5 0.0624 1.6888 0.4261 0.0431 1.6446 0.4222 

15 0.0562 1.6079 0.5202 0.0155 1.5517 0.5238 

17.5 0.0717 1.5677 0.5998 0.0045 1.5069 0.6169 

20 0.099 1.5443 0.6636 0.0051 1.4874 0.7002 

22.5 0.1318 1.5285 0.7125 0.0133 1.4815 0.7736 

25 0.1662 1.515 0.7512 0.0264 1.4825 0.8379 
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Fig. 4.5. Horizontal force in bottom chord vs. span-to-camber ratio in bottom chord 

for a biconcave cable truss 

 

 
Fig. 4.6. Horizontal force in top chord vs. span-to-camber ratio in bottom chord for a 

biconcave cable truss 
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Fig. 4.7. Deflection at midspan vs. span-to-camber ratio in bottom chord for a 

biconcave cable truss 

 

Table 4.4. Percent error of results for Case Study 2 (%) 
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w 1.4 1.6 0.9 -0.7 -2.9 -5.5 -8.6 -11.5 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6 8 10 12 14 16 18 20 22 24 26

w
. 
1

0
3

[m
m

]

l/c [-]

Nonlinear Linear



23 

 

 

Fig. 4.8. Percent error of results vs. span-to-camber ratio in bottom chord for a 

biconcave cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.3 

and more straightforward observation can be obtained in Fig. 4.5, Fig. 4.6 and Fig. 4.7. 

Again, more detailed percent error of the results is shown in Table 4.4. From Fig. 4.8 it 

is shown that as span-to-camber ratio of bottom chord increases, the horizontal 

component of cable force in bottom chord obtained by linear solution becomes more 

and more underestimated, but the difference has a tendency to decrease after /l c  gets 

over 18. The deflection at midspan changes from being somewhat underestimated to 

being somewhat more overestimated, while the difference of horizontal force in top 

chord obtained by two solutions remains almost the same. 
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4.3 Case Study 3: Different Horizontal Pretensions in Chords for a Biconcave 

Cable Truss 

Using the same model as Case Study 1, but this time both the span-to-sag ratio of top 

chord and the span-to-camber ratio of bottom chord are kept constant at / /l s l c 25, 

and the related values are thus given as 0.5b td d  m and 2.9b tb b  m. Eight 

different initial horizontal pretension in the bottom chord, 0bH   600, 700, 800, 900, 

1000, 1100, 1200, 1300 kN, are considered. The corresponding pretension in the top 

chord can be estimated using the same formula, 0 0 /t bH H c s , as shown in Case Study 

1. 

 

Table 4.5. Analytical results for Case Study 3 

H0b 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

600 0.1662 1.515 0.7512 0.0264 1.4825 0.8379 

700 0.2758 1.586 0.7282 0.147 1.5508 0.8078 

800 0.3864 1.6562 0.7111 0.2662 1.6213 0.7798 

900 0.4958 1.7306 0.6901 0.384 1.6938 0.7537 

1000 0.6049 1.8052 0.6719 0.5008 1.768 0.7293 

1100 0.7137 1.8814 0.6541 0.6164 1.8439 0.7064 

1200 0.8221 1.9589 0.6371 0.7312 1.9213 0.6849 

1300 0.9302 2.0376 0.6208 0.845 2 0.6646 
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Fig. 4.9. Horizontal force in bottom chord vs. initial horizontal pretension in bottom 

chord for a biconcave cable truss 

 

 

Fig. 4.10. Horizontal force in top chord vs. initial horizontal pretension in bottom 

chord for a biconcave cable truss 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 600 700 800 900 1000 1100 1200 1300 1400

H
b
. 
1

0
3

[k
N

]

H0b [kN]

Nonlinear Linear

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

500 600 700 800 900 1000 1100 1200 1300 1400

H
t. 

1
0

3
[k

N
]

H0b [kN]

Nonlinear Linear



26 

 

 

Fig. 4.11. Deflection at midspan vs. initial horizontal pretension in bottom chord for a 

biconcave cable truss 

 

Table 4.6. Percent error of results for Case Study 3 (%) 
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Fig. 4.12. Percent error of results vs. initial horizontal pretension in bottom chord for a 

biconcave cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.5 

and more straightforward observation can be obtained in Fig. 4.9, Fig. 4.10 and Fig. 

4.11. Again, more detailed percent error of the results is shown in Table 4.6. From Fig. 

4.12 it is shown that as the initial horizontal component of pretension in bottom chord 

increases (the corresponding pretension in top chord will also change), the final 

horizontal force in bottom chord obtained by linear solution becomes less and less 

underestimated, the overestimation of the deflection at midspan is also somewhat 

reduced, while the difference of horizontal force in top chord obtained by two solutions 

remains almost the same. 
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4.4 Case Study 4: Different Temperature Differences in Top Chord for a Biconcave 

Cable Truss 

Using the same model as Case Study 1, but this time both the span-to-sag ratio of top 

chord and the span-to-camber ratio of bottom chord are kept constant at / /l s l c 25, 

and the related values are thus given as 0.5b td d  m and 2.9b tb b  m. By 

assuming the coefficient of expansion of the whole cable truss to be 
51.2 10   /℃, 

eight different temperature differences in top chord, tT   0, 20, 40, 60, 80, 100, 120 

and 140 ℃, are considered to take the effect of temperature into account, while no 

temperature difference occurs in bottom chord. 

 

Table 4.7. Analytical results for Case Study 4 

ΔTt 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

0 0.1662 1.515 0.7512 0.0264 1.4825 0.8379 

20 0.1819 1.5413 0.7182 0.0483 1.5204 0.8059 

40 0.1978 1.5684 0.6854 0.0703 1.5584 0.7738 

60 0.2138 1.5963 0.653 0.0922 1.5963 0.7418 

80 0.2292 1.6264 0.6179 0.1141 1.6343 0.7097 

100 0.2459 1.6557 0.5871 0.1361 1.6722 0.6777 

120 0.2626 1.6857 0.5567 0.158 1.7102 0.6457 

140 0.2795 1.7163 0.527 0.1799 1.7481 0.6136 
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Fig. 4.13. Horizontal force in bottom chord vs. temperature difference in top chord for 

a biconcave cable truss 

 

 

Fig. 4.14. Horizontal force in top chord vs. temperature difference in top chord for a 

biconcave cable truss 
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Fig. 4.15. Deflection at midspan vs. temperature difference in top chord for a 

biconcave cable truss 

 

Table 4.8. Percent error of results for Case Study 4 (%) 
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Fig. 4.16. Percent error of results vs. temperature difference in top chord for a 

biconcave cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.7 

and more straightforward observation can be obtained in Fig. 4.13, Fig. 4.14 and Fig. 

4.15. Again, more detailed percent error of the results is shown in Table 4.8. From Fig. 

4.16 it is shown that as the temperature difference in top chord increases, the horizontal 

force in bottom chord obtained by linear solution becomes less and less underestimated, 

the deflection at midspan becomes slightly more overestimated, while the difference of 

horizontal force in top chord obtained by two solutions remains almost the same. 
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4.5 Case Study 5: Different Temperature Differences in Bottom Chord for a 

Biconcave Cable Truss 

Using the same model as Case Study 1, but this time both the span-to-sag ratio of top 

chord and the span-to-camber ratio of bottom chord are kept constant at / /l s l c 25, 

and the related values are thus given as 0.5b td d  m and 2.9b tb b  m. By 

assuming the coefficient of expansion of the whole cable truss to be 
51.2 10   /℃, 

eight different temperature differences in bottom chord, bT   0, -20, -40, -60, -80, -

100, -120 and -140 ℃, are considered to take the effect of temperature into account, 

while no temperature difference occurs in top chord. Note that these values are chosen 

to make sure the analytical results are within the positive range, so that better analysis 

and comparison can be performed. 

 

Table 4.9. Analytical results for Case Study 5 

ΔTb 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

-140 0.4584 1.617 0.8285 0.2528 1.636 0.9837 

-120 0.4164 1.6034 0.8176 0.2205 1.6141 0.9628 

-100 0.3744 1.5896 0.8063 0.1881 1.5921 0.942 

-80 0.3325 1.5755 0.7949 0.1558 1.5702 0.9212 

-60 0.2905 1.5612 0.7831 0.1234 1.5483 0.9004 

-40 0.2485 1.5467 0.7711 0.0911 1.5263 0.8795 

-20 0.2076 1.5305 0.7624 0.0587 1.5044 0.8587 

0 0.1662 1.515 0.7512 0.0264 1.4825 0.8379 
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Fig. 4.17. Horizontal force in bottom chord vs. temperature difference in bottom chord 

for a biconcave cable truss 

 

 

Fig. 4.18. Horizontal force in top chord vs. temperature difference in bottom chord for 

a biconcave cable truss 
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Fig. 4.19. Deflection at midspan vs. temperature difference in bottom chord for a 

biconcave cable truss 

 

Table 4.10. Percent error of results for Case Study 5 (%) 

ΔTb -140 -120 -100 -80 -60 -40 -20 0 

Hb 44.85 47.05 49.76 53.14 57.52 63.34 71.72 84.12 
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Fig. 4.20. Percent error of results vs. temperature difference in bottom chord for a 

biconcave cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.9 

and more straightforward observation can be obtained in Fig. 4.17, Fig. 4.18 and Fig. 

4.19. Again, more detailed percent error of the results is shown in Table 4.10. From Fig. 

4.20 it is shown that as the temperature difference in bottom chord increases, the 

horizontal force in bottom chord obtained by linear solution becomes more and more 

underestimated, the deflection at midspan becomes slightly less overestimated, while 

the difference of horizontal force in top chord obtained by two solutions remains almost 

the same. It can be seen that the results of changed temperature difference in bottom 

chord have an overall reverse trend of the ones of changed temperature difference in top 

chord. 
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4.6 Case Study 6: Different Span-to-camber Ratios of Top Chord for a Biconvex 

Cable Truss 

Here a biconvex cable truss as shown in Fig. 3.2 is considered (Fig. 3.2 is put here again 

for convenience and better understanding, but will not be included in the list of figures), 

of which the span, cross-sectional areas of both bottom and top chords, moduli of 

elasticity and uniformly distributed load over the entire span are exactly same as the 

description in Case Study 1. 

 

 

Fig. 3.2. Geometry for biconvex cable truss 

 

This time, eight different span-to-camber ratios of the top chord, /l c   7.5, 10, 12.5, 

15, 17.5, 20, 22.5, and 25 are adopted, while the span-to-sag ratio of the bottom chord 

is kept constant at /l s   25. The other geometrical data are specified as: 0.5b tb b 

m, 2.9bd  m, and t td b c  . The initial horizontal pretention in the bottom chord is 
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still 0 600.0bH  kN, but the initial horizontal pretention in the top chord should be 

changed to 0 0 /t bH H s c  due to the changed geometry. 

 

Table 4.11. Analytical results for Case Study 6 

l / c 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

7.5 0.7193 -0.3387 0.1684 0.7127 -0.3326 0.1647 

10 0.795 -0.4148 0.2711 0.7781 -0.4023 0.2601 

12.5 0.8883 -0.4585 0.3895 0.8508 -0.4434 0.3663 

15 0.9888 -0.4644 0.513 0.9253 -0.4558 0.4752 

17.5 1.0862 -0.4319 0.6302 0.9973 -0.4418 0.5803 

20 1.1765 -0.3596 0.7312 1.0636 -0.4053 0.6772 

22.5 1.2494 -0.2628 0.8115 1.1226 -0.3508 0.7634 

25 1.3049 -0.1512 0.8715 1.1736 -0.2825 0.8379 

 

 

Fig. 4.21. Horizontal force in bottom chord vs. span-to-camber ratio in top chord for a 

biconvex cable truss 
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Fig. 4.22. Horizontal force in top chord vs. span-to-camber ratio in top chord for a 

biconvex cable truss 

 

 

Fig. 4.23. Deflection at midspan vs. span-to-camber ratio in top chord for a biconvex 

cable truss 
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Table 4.12. Percent error of results for Case Study 6 (%) 

l / c 7.5 10 12.5 15 17.5 20 22.5 25 

Hb 0.92 2.13 4.22 6.42 8.18 9.60 10.15 10.06 

Ht 1.80 3.01 3.29 1.85 -2.29 -12.71 -33.49 -86.84 

w 2.20 4.06 5.96 7.37 7.92 7.39 5.93 3.86 

 

 

Fig. 4.24. Percent error of results vs. span-to-camber ratio in top chord for a biconvex 

cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.11 

and more straightforward observation can be obtained in Fig. 4.21, Fig. 4.22 and Fig. 

4.23. The negative values shown in the table and graph for horizontal force in top chord 
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in Table 4.12. From Fig. 4.24 it is shown that as the span-to-camber ratio in top chord 
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solutions remains almost the same. The horizontal force in top chord changes from 

being somewhat underestimated to being quite more overestimated. 
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4.7 Case Study 7: Different Span-to-sag Ratios of Bottom Chord for a Biconvex 

Cable Truss 

Using the same model as Case Study 6, but this time eight different span-to-sag 

ratios of the bottom chord, /l s   7.5, 10, 12.5, 15, 17.5, 20, 22.5, and 25 are adopted, 

while the span-to-camber ratio of the top chord is kept constant at /l c   25. The other 

geometrical data are specified as: 0.5b tb b  m, b bd b s   and t td b c  .  

 

Table 4.13. Analytical results for Case Study 7 

l / s 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

7.5 1.0264 1.7904 0.208 1.0272 1.7776 0.2111 

10 1.1093 1.1952 0.3093 1.1066 1.1676 0.3156 

12.5 1.1688 0.8021 0.4134 1.1569 0.7554 0.4222 

15 1.2119 0.5156 0.5152 1.1845 0.4483 0.5238 

17.5 1.2439 0.2945 0.6124 1.1955 0.2074 0.6169 

20 1.2685 0.1172 0.7041 1.1949 0.0126 0.7002 

22.5 1.2883 -0.0287 0.7905 1.1867 -0.1481 0.7736 

25 1.3049 -0.1512 0.8715 1.1736 -0.2825 0.8379 
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Fig. 4.25. Horizontal force in bottom chord vs. span-to-sag ratio in bottom chord for a 

biconvex cable truss 

 

 

Fig. 4.26. Horizontal force in top chord vs. span-to-sag ratio in bottom chord for a 

biconvex cable truss 
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Fig. 4.27. Deflection at midspan vs. span-to-sag ratio in bottom chord for a biconvex 

cable truss 
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Fig. 4.28. Percent error of results vs. span-to-sag ratio in bottom chord for a biconvex 

cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.13 

and more straightforward observation can be obtained in Fig. 4.25, Fig. 4.26 and Fig. 

4.27. The negative values shown in the table and graph for horizontal force in top chord 

indicate the chord is carrying compression. Again, more detailed percent error of the 

results is shown in Table 4.14. However, for the corresponding graph plot, the values 

adopted for horizontal force in top chord are those within tension range only, so as to 

make the analysis consistent and meaningful. From Fig. 4.28 it is shown that as the 

span-to-sag ratio in bottom chord increases, the horizontal force in bottom chord 

obtained by linear solution gets slightly more underestimated, the horizontal force in 

top chord becomes quite more underestimated, while the difference of deflection at 

midspan obtained by two solutions remains almost the same.  
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4.8 Case Study 8: Different Horizontal Pretensions in Chords for a Biconvex Cable 

Truss 

Using the same model as Case Study 6, but this time both the span-to-camber ratio of 

top chord and the span-to-sag ratio of bottom chord are kept constant at / /l c l s 25, 

and the related values are thus given as 0.5b tb b  m and 2.9b td d  m. Eight 

different initial horizontal pretension in the bottom chord, 0bH   900, 1000, 1100, 1200, 

1300, 1400, 1500 and 1600 kN, are considered. The corresponding pretension in the top 

chord can be estimated using the same formula, 0 0 /t bH H s c , as shown in Case Study 

6. Note that these values are chosen so that both the nonlinear and linear solution are 

within the tension range, which makes the analysis more consistent and meaningful. 

 

Table 4.15. Analytical results for Case Study 8 

H0b 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

900 1.5218 0.2111 0.7815 1.416 0.1062 0.7537 

1000 1.5978 0.33 0.7559 1.4992 0.232 0.7293 

1100 1.6759 0.4475 0.7309 1.5836 0.3561 0.7064 

1200 1.7556 0.5641 0.7071 1.6688 0.4787 0.6849 

1300 1.8367 0.6801 0.6851 1.755 0.6 0.6646 

1400 1.9187 0.7959 0.665 1.8419 0.7201 0.6456 

1500 2.0019 0.9108 0.6459 1.9296 0.8391 0.6276 

1600 2.0861 1.025 0.6278 2.018 0.957 0.6105 
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Fig. 4.29. Horizontal force in bottom chord vs. initial horizontal pretension in bottom 

chord for a biconvex cable truss 

 

 

Fig. 4.30. Horizontal force in top chord vs. initial horizontal pretension in bottom 

chord for a biconvex cable truss 
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Fig. 4.31. Deflection at midspan vs. initial horizontal pretension in bottom chord for a 

biconvex cable truss 

 

Table 4.16. Percent error of results for Case Study 8 (%) 
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Fig. 4.32. Percent error of results vs. initial horizontal pretension in bottom chord for a 

biconvex cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.15 

and more straightforward observation can be obtained in Fig. 4.29, Fig. 4.30 and Fig. 

4.31. Again, more detailed percent error of the results is shown in Table 4.16. From Fig. 

4.32 it is shown that as the initial horizontal pretension in bottom chord increases, the 

horizontal force in bottom chord obtained by linear solution gets slightly less 

underestimated, the underestimation of horizontal force in top chord reduces even more, 

while the difference of deflection at midspan obtained by two solutions remains almost 

the same. 
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4.9 Case Study 9: Different Temperature Differences in Top Chord for a Biconvex 

Cable Truss 

Using the same model as Case Study 6, but this time both the span-to-camber ratio of 

top chord and the span-to-sag ratio of bottom chord are kept constant at / /l c l s 25, 

and the related values are thus given as 0.5b tb b  m and 2.9b td d  m. By 

assuming the coefficient of expansion of the whole cable truss to be 
51.2 10   /℃, 

eight different temperature differences in top chord, tT   0, -20, -40, -60, -80, -100, -

120 and -140 ℃, are considered to take the effect of temperature into account, while no 

temperature difference occurs in bottom chord. Note that these values are chosen so that 

both the nonlinear and linear solutions lies on pure tension or compression range, which 

makes the analysis more consistent and meaningful. 

 

Table 4.17. Analytical results for Case Study 9 

ΔTt 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

-140 1.155 -0.5381 0.7076 1.0201 -0.5481 0.6136 

-120 1.1784 -0.4847 0.7332 1.042 -0.5102 0.6457 

-100 1.2009 -0.4309 0.7581 1.0639 -0.4722 0.6777 

-80 1.2228 -0.3764 0.7822 1.0859 -0.4343 0.7097 

-60 1.2441 -0.3211 0.8056 1.1078 -0.3963 0.7418 

-40 1.2648 -0.2652 0.8283 1.1297 -0.3584 0.7738 

-20 1.2851 -0.2085 0.8502 1.1517 -0.3204 0.8059 

0 1.3049 -0.1512 0.8715 1.1736 -0.2825 0.8379 
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Fig. 4.33. Horizontal force in bottom chord vs. temperature difference in top chord for 

a biconvex cable truss 

 

 

Fig. 4.34. Horizontal force in top chord vs. temperature difference in top chord for a 

biconvex cable truss 

 

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

-160 -140 -120 -100 -80 -60 -40 -20 0

H
b
. 
1

0
3

[k
N

]

ΔTt [℃]

Nonlinear Linear

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-160 -140 -120 -100 -80 -60 -40 -20 0

H
t. 

1
0

3
[k

N
]

ΔTt [℃]

Nonlinear Linear



51 

 

 

Fig. 4.35. Deflection at midspan vs. temperature difference in top chord for a 

biconvex cable truss 

 

Table 4.18. Percent error of results for Case Study 9 (%) 

ΔTt -140 -120 -100 -80 -60 -40 -20 0 

Hb 11.68 11.58 11.41 11.20 10.96 10.68 10.38 10.06 

Ht -1.86 -5.26 -9.58 -15.38 -23.42 -35.14 -53.67 -86.84 

w 13.28 11.93 10.61 9.27 7.92 6.58 5.21 3.86 
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Fig. 4.36. Percent error of results vs. temperature difference in top chord for a 

biconvex cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.17 

and more straightforward observation can be obtained in Fig. 4.33, Fig. 4.34 and Fig. 

4.35. Again, more detailed percent error of the results is shown in Table 4.18. From Fig. 

4.36 it is shown that as the temperature difference in top chord increases, the deflection 

at midspan obtained by linear solution gets slightly less underestimated, the horizontal 

force in top chord becomes more and more overestimated in terms of compression, 

while the difference of horizontal force in bottom chord obtained by two solutions 

remains almost the same. 
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4.10 Case Study 10: Different Temperature Differences in Bottom Chord for a 

Biconvex Cable Truss 

Using the same model as Case Study 6, but this time both the span-to-camber ratio of 

top chord and the span-to-sag ratio of bottom chord are kept constant at / /l c l s 25, 

and the related values are thus given as 0.5b tb b  m and 2.9b td d  m. By 

assuming the coefficient of expansion of the whole cable truss to be 
51.2 10   /℃, 

eight different temperature differences in bottom chord, bT   0, 20, 40, 60, 80, 100, 

120 and 140 ℃, are considered to take the effect of temperature into account, while no 

temperature difference occurs in top chord. Note that these values are chosen so that 

both the nonlinear and linear solutions lies on pure tension or compression range, which 

makes the analysis more consistent and meaningful. 

 

Table 4.19. Analytical results for Case Study 10 

ΔTb 
Nonlinear Solution, 103 Linear Solution, 103 

Hb, kN Ht, kN w, mm Hb, kN Ht, kN w, mm 

0 1.3049 -0.1512 0.8715 1.1736 -0.2825 0.8379 

20 1.2858 -0.1707 0.9008 1.1413 -0.3044 0.8587 

40 1.2673 -0.1901 0.9306 1.1089 -0.3263 0.8795 

60 1.2494 -0.2093 0.9607 1.0766 -0.3483 0.9004 

80 1.2321 -0.2284 0.9911 1.0442 -0.3702 0.9212 

100 1.2155 -0.2472 1.022 1.0119 -0.3921 0.942 

120 1.1994 -0.266 1.0532 0.9795 -0.4141 0.9628 

140 1.184 -0.2844 1.0847 0.9472 -0.436 0.9837 
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Fig. 4.37. Horizontal force in bottom chord vs. temperature difference in bottom chord 

for a biconvex cable truss 

 

 

Fig. 4.38. Horizontal force in top chord vs. temperature difference in bottom chord for 

a biconvex cable truss 
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Fig. 4.39. Deflection at midspan vs. temperature difference in bottom chord for a 

biconvex cable truss 

 

Table 4.20. Percent error of results for Case Study 10 (%) 

ΔTb 0 20 40 60 80 100 120 140 

Hb 10.06 11.24 12.50 13.83 15.25 16.75 18.33 20.00 

Ht -86.84 -78.32 -71.65 -66.41 -62.08 -58.62 -55.68 -53.31 

w 3.86 4.67 5.49 6.28 7.05 7.83 8.58 9.31 
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Fig. 4.40. Percent error of results vs. temperature difference in bottom chord for a 

biconvex cable truss 

 

Same as Case Study 1, the analytical results in this case are tabulated in Table 4.19 

and more straightforward observation can be obtained in Fig. 4.37, Fig. 4.38 and Fig. 

4.39. Again, more detailed percent error of the results is shown in Table 4.20. From Fig. 

4.40 it is shown that as the temperature difference in bottom chord increases, the 

horizontal force in bottom chord obtained by linear solution gets slightly more 

underestimated, the horizontal force in top chord becomes less overestimated in terms 

of compression, while the difference of deflection at midspan obtained by two solutions 

remains almost the same. 
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 

In this thesis, the nonlinear and linear solutions for cable trusses are derived following 

the procedures proposed by Irvine (1981) with the self-weight of cables ignored. After 

the solutions are obtained, 10 cases are assumed with different parameter values 

changed to study the effect each parameter will have on the difference of results from 

nonlinear and linear approaches. By developing a program of MATLAB 2016b, the 

corresponding closed-form equations are solved and the results are tabulated in tables 

and plotted in figures for better analysis. 

The parameters /l s , /l c , 0bH , tT  and bT  in a biconcave cable truss are studied 

from section 4.1 to section 4.5, while same parameters in a biconvex cable truss are 

studied from section 4.6 to section 4.10. In this chapter, the results obtained in chapter 

4 will be reorganized to provide a better idea how the resultant horizontal forces in 

bottom and top chords and the deflection at midspan are affected by the parameters 

mentioned above. However, it should be noted that all the conclusions made here are 

within a limited range. Since it is not practical to extend the value of interest to infinity, 

only some relatively typical ones are chosen. Also, these changing values in each case 

are assumed in a way that most of the corresponding results are within pure positive or 

negative range, which can make the analysis more consistent and meaningful in a 

manner. All the following conclusions are based on this kind of assumed ranges, and 

this should be noted throughout this chapter. For the results out of this range, to some 

degree, predictions can be made according to the existing data shown in this thesis. 
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5.1 Biconcave Cable Truss 

For the resultant horizontal force in bottom chord, bH , obtained by linear solution, 

compared with the one obtained by nonlinear solution: 

(1) As the span-to-sag ratio of top chord increases, it becomes quite more 

underestimated. 

(2) As the span-to-camber ratio of bottom chord increases, it becomes quite more 

underestimated at first, and gets slightly less underestimated afterwards. 

(3) As the pretension in chords increases, it becomes quite less underestimated. 

(4) As the temperature difference in top chord increases from 0, it becomes quite less 

underestimated. 

(5) As the temperature difference in bottom chord increases from negative value to 0, it 

becomes more underestimated to some degree. 

 

For the resultant horizontal force in top chord, tH , obtained by linear solution, 

compared with the one obtained by nonlinear solution: 

(1) As the span-to-sag ratio of top chord increases, the difference remains almost the 

same. 

(2) As the span-to-camber ratio of bottom chord increases, the difference remains 

almost the same. 

(3) As the pretension in chords increases, the difference remains almost the same. 

(4) As the temperature difference in top chord increases from 0, the difference remains 

almost the same. 

(5) As the temperature difference in bottom chord increases from negative value to 0, 

the difference remains almost the same. 

 



59 

 

For the deflection at midspan, w , obtained by linear solution, compared with the one 

obtained by nonlinear solution: 

(1) As the span-to-sag ratio of top chord increases, it becomes slightly more 

overestimated. 

(2) As the span-to-camber ratio of bottom chord increases, it becomes slightly more 

overestimated. 

(3) As the pretension in chords increases, it becomes slightly less overestimated. 

(4) As the temperature difference in top chord increases from 0, it becomes slightly 

more overestimated. 

(5) As the temperature difference in bottom chord increases from negative value to 0, it 

becomes slightly less overestimated. 

 

It is shown that, for a biconcave cable truss, the difference of resultant horizontal force 

in bottom chord between nonlinear and linear solutions is very sensitive to change of 

any of these parameters, the difference of deflection at midspan is relatively less 

sensitive, while the difference of resultant horizontal force in top chord keeps almost 

unaffected. 

 

5.2 Biconvex Cable Truss 

For the resultant horizontal force in bottom chord, bH , obtained by linear solution, 

compared with the one obtained by nonlinear solution: 

(1) As the span-to-camber ratio of top chord increases, it becomes slightly more 

underestimated. 

(2) As the span-to-sag ratio of bottom chord increases, it becomes slightly more 

underestimated. 
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(3) As the pretension in chords increases, it becomes slightly less underestimated. 

(4) As the temperature difference in top chord increases from negative value to 0, the 

difference remains almost the same. 

(5) As the temperature difference in bottom chord increases from 0, it becomes slightly 

more underestimated. 

 

For the resultant horizontal force in top chord, tH , obtained by linear solution, 

compared with the one obtained by nonlinear solution: 

(1) As the span-to-camber ratio of top chord increases, it changes from being slightly 

underestimated to being quite more overestimated. 

(2) As the span-to-sag ratio of bottom chord increases, it becomes quite more 

underestimated. 

(3) As the pretension in chords increases, it becomes quite less underestimated. 

(4) As the temperature difference in top chord increases from negative value to 0, it 

becomes quite more overestimated. 

(5) As the temperature difference in bottom chord increases from 0, it becomes less 

overestimated to some degree. 

 

For the deflection at midspan, w , obtained by linear solution, compared with the one 

obtained by nonlinear solution: 

(1) As the span-to-camber ratio of top chord increases, the difference remains almost 

the same. 

(2) As the span-to-sag ratio of bottom chord increases, the difference remains almost 

the same. 

(3) As the pretension in chords increases, the difference remains almost the same. 
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(4) As the temperature difference in top chord increases from negative value to 0, it 

becomes slightly less underestimated. 

(5) As the temperature difference in bottom chord increases from 0, the difference 

remains almost the same. 

 

It is shown that, for a biconvex cable truss, the difference of resultant horizontal force 

in top chord between nonlinear and linear solutions is very sensitive to change of any 

of these parameters, the difference of resultant horizontal force in bottom chord is 

relatively less sensitive, while the difference of deflection at midspan keeps almost 

unaffected. 

 

By considering the analytical results of both types of cable truss, it is also found the 

increase of pretension in chords generally results in the decrease of difference between 

the results obtained by those two approaches. 
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APPENDIX A 

global l Ab At Eb Et q db dt bb bt H0b H0t Leb Let LTb LTt alpha dTb dTt 

l = 60; Ab = 1.3e-3; At = 2e-3; 

Eb = 1.5e8; Et = 1.5e8; q = 10; 

alpha = 1.2e-5; 

 

% dTb = 0; 

dTb = input('please input dTb:'); 

dTt = 0; 

% dTt = input('please input dTt:'); 

 

% tmp = input('please input l/s:'); 

s = l/25; 

c = l/25; 

bb = 0.5; 

bt = 0.5; 

db = bb + s;  

dt = bt + c; 

H0b = 600; 

% H0b = input('please input H0b:'); 

H0t = H0b*s/c; 

 

DBb = db - bb; DBt = dt - bt; Hsum = H0b + H0t; 

 

Leb = l*(1+8*(DBb/l)^2); 
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LTb = l*(1+16/3*(DBb/l)^2); 

Let = l*(1+8*(DBt/l)^2); 

LTt = l*(1+16/3*(DBt/l)^2); 

 

 

% ******linear solution (start)****** 

 

nb1 = Leb/(Eb*Ab) + 16*DBb^2/(3*l*Hsum); 

nb2 = 16*DBb*DBt/(3*l*Hsum); 

nb3 = alpha*dTb*LTb - 2*q*l*DBb/(3*Hsum); 

 

nt1 = 16*DBb*DBt/(3*l*Hsum); 

nt2 = Let/(Et*At) + 16*DBt^2/(3*l*Hsum); 

nt3 = alpha*dTt*LTt - 2*q*l*DBt/(3*Hsum); 

 

syms dHb dHt 

eqn1 = nb1*dHb + nb2*dHt + nb3 ==0; 

eqn2 = nt1*dHb + nt2*dHt + nt3 ==0; 

[deltaHb,deltaHt]=solve([eqn1,eqn2],[dHb,dHt]); 

 

Hb_linear = (H0b + vpa(deltaHb))/1000; 

Ht_linear = (H0t - vpa(deltaHt))/1000; 

w_linear = 1/(H0b+H0t) * (q*l^2/8 - vpa(deltaHb)*(db-bb) - vpa(deltaHt)*(dt-bt)); 

 

fprintf('Linear Hb = %.4f\n ',Hb_linear) 
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fprintf('Linear Ht = %.4f\n ',Ht_linear) 

fprintf('Linear w = %.4f\n ',w_linear) 

% ******linear solution (end)****** 

% ******nonlinear solution (start)****** 

fun = @root2d; 

x0 = [0,0]; 

x = fsolve(fun,x0); 

Hb_nonlinear = (H0b + x(1))/1000; 

Ht_nonlinear = (H0t - x(2))/1000; 

w_nonlinear = 1/(H0b+x(1)+H0t-x(2)) * (q*l^2/8 - x(1)*(db-bb) - x(2)*(dt-bt)); 

fprintf('Nonlinear Hb = %.4f\n ',Hb_nonlinear) 

fprintf('Nonlinear Ht = %.4f\n ',Ht_nonlinear) 

fprintf('Nonlinear w = %.4f\n ',w_nonlinear) 

fprintf('-----------------------\n\n\n ') 

function F = root2d(x) 

global l Ab At Eb Et q db dt bb bt H0b H0t Leb Let LTb LTt alpha dTb dTt 

dHb = x(1); dHt = x(2); 
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F(1) = 8*(db-bb)/(l^2*(H0b+dHb+H0t-dHt))*(q*l^3/12 - 2*l/3*dHb*(db-bb) - 

2*l/3*dHt*(dt-bt)) ... 

     + 1/(2*(H0b+dHb+H0t-dHt)^2)*(q - 8*dHb*(db-bb)/l^2 - 8*dHt*(dt-

bt)/l^2)*(q*l^3/12 - 2*l/3*dHb*(db-bb) - 2*l/3*dHt*(dt-bt)) ... 

     - dHb*Leb/(Eb*Ab) - alpha*dTb*LTb; 

F(2) = 8*(dt-bt)/(l^2*(H0b+dHb+H0t-dHt))*(q*l^3/12 - 2*l/3*dHb*(db-bb) - 

2*l/3*dHt*(dt-bt)) ... 

     - 1/(2*(H0b+dHb+H0t-dHt)^2)*(q - 8*dHb*(db-bb)/l^2 - 8*dHt*(dt-

bt)/l^2)*(q*l^3/12 - 2*l/3*dHb*(db-bb) - 2*l/3*dHt*(dt-bt)) ... 

     - dHt*Let/(Et*At) - alpha*dTt*LTt; 

end 

% ******nonlinear solution (end)****** 


