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3. ABSTRACT 

        This project is to study the optimum locations of the outriggers of an outrigger-braced 

structure with unsymmetrical three-stories. In this project, the governing equations about 

the compatibility of columns’ axial deformation for the unsymmetrical three-stories 

outrigger-braced structure are derived, which is based on the method proposed by Er and 

Iu (2009). Itis an improved version of the method proposed by Smith and Salim (1981) for 

analyzing the symmetrical outrigger-braced structures. The governing equations about the 

axial forces in the columns of the three-stories unsymmetrical outrage-braced structures are 

formulated. Some non-dimensional parameters are introduced when formulating the 

governing equations about the axial forces in the columns. They can reduce the complexity 

of the governing equations and more importantly reflect the behavior of the structures in 

various cases in general. Based on the objective that the top drift of the structure is 

minimized, the governing equations of the optimum locations of the outrages of the three-

stories unsymmetrical outrages-braced structures are formulated. Based on the derived 

governing equations, a computer program is written for the numerical analysis in software 

Matlab. The influences of the structural parameters on the optimum locations of the 

structure are studied numerically.  It is found through numerical analyses that the optimum 

outrage locations are  mainly influenced by the un-symmetry of the structure. The stiffness 

of the shear wall core, outrigger and column also influences the optimum locations of 

outrages. The numerical results are presented with figures under different parameter values 

and could be referenced in the design of three-stories unsymmetrical outrigger-braced 

structures. 
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CHAPTER 1 INTRODUCTION 

1.1 History and Classification of Tall Building Structures 

With the society development, there is not enough space for people to live in.  As the 

population grows, the tall building structures are needed. This demand is more serious in 

international cities, such as New York, London and Hong Kong. With the tall building, 

more space can be provided. In this way, the life condition of citizens and the development 

of cities can become better. 

The Home Insurance Building, the first tall building, was built in Chicago in 1884. This 

building was considered as a modern skyscraper in that century. It’s because it was mainly 

built by steel framing technology. 

After the first tall building was built, a new era of skyscraper has come. Many tall 

buildings spring up in United State, followed by Europe, Asia. According to Mir M. Ail 

and Kyoung Sun Moon (2007), the classifications of different architectural styles are 

interior structural system and exterior structural system. 

 

1.1.1 Interior Structural System 

According to Mir M. Ail and Kyoung Sun Moon (2007), the two basic types of 

lateral load-resisting systems in the category of interior structures are the moment-resisting 

frames and shear trusses/ shear wall. Also, to be more specific, rigid frames, shear wall frame 

interaction system, braced hinged frame, shear wall and outrigger braced structures are 

included in the interior structural systems. 
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In all these interior structure systems, braced hinged frame is the smallest efficient 

height limit system. It is only around 10 stories high. Shear truss member is used to resist 

the lateral loads. 

Rigid frames are the second in the ranking of efficient height limit system and it can 

be around 30 floors with structural flexibility. Both steel and concrete can be the material 

of rigid frames and both of them has the advantages of providing the flexibility in floor 

planning. 

The third ranking is the shear wall structure, which can be up to 70 floors. The 

advantages of the shear wall structure are that it can effectively resists lateral shear by 

concrete shear wall or the provided shear truss/wall. This technology was successfully used 

in the 311m South Wacker Drive in Chicago, which was built in 75 floors height. 

Outrigger-braced structure is the structure system that has the largest efficient 

height limit. 

 

1.1.2 Exterior Structural System 

There are different combinations and subcategories for exterior structural system, 

such as tube, diagrid, super frames and exo-skeleton space truss structures. 

Tube is one of the most typical exterior structures, which can be defined as a three- 

dimensional structural system utilizing the entire building perimeter to resist lateral loads  

according to Mir M. Ail and Kyoung Sun Moon (2007). Tube system was raised by Fazlur 

Khan in 1961 (Ail,2001) and then the tube in tube system, framed tube system, bundled 

tube and braced tube system structure were created in the following development of tall 

building system. The building of this system could be built up to 150 floors or higher. The 

John Hancock Center and Sears tower in Chicago are the example of its application. 
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With their structural efficiency as a varied version of the tubular systems, diagrid 

structures have been emerging as a new aesthetic trend for tall buildings in the ear of 

pluralistic styles which according to Mir M. Ail and Kyoung Sun Moon (2007). However, 

the efficient height limit of diagrid structures varies for different material. For steel, the 

structure can be up to 100 floors. On the other hand, it reduces to 60 floors when the material 

is concrete. 

In addition, the diagrid structures can block some outdoor view. Therefore, the diagrid 

structures are generally designed within the building cores. 

Other types of exterior structural system are super frames, space truss structure and 

exo-skeleton space truss, which have been occasionally used for tall building. Some 

structures, like super frames structure can be built up to 160 floors. Others are little lower, 

but they still can be up to 100 floors. The Chicago World Trade Center, which is 168 stories, 

is one of the examples in the application of super frames structure. 

 

1.2 Background of Outrigger-braced Structures 

Back to the old times, outrigger system has been used in ship design to resist the wind 

forces in their sails, in order to make the tall masts stable and strong. The outrigger system 

reduces the overturn moment in the core and transfers the reduced moment to the outer 

columns. Hence, outrigger-braced structure benefits for resisting lateral loading. 

In addition, the exterior column spacing of outrigger system can easily meet aesthetic and 

functional requirements. For super tall buildings, connecting the outriggers with exterior 

mega columns opens up the façade system for flexible aesthetic. 
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However, outriggers system interferes with rentable space and lack of repetitive 

structural framing. It results in a negative impact on the erection process. 

1.3 Objective of the Research 

Most of the researches of the outrigger-braced structure are about the symmetrical 

outrigger-braced structure. In reality, unsymmetrical outrigger-braced structure can have a 

better aesthetic impact and flexible interior space arrangement. This project is about the 

study of structural parameters that influence the optimum height of unsymmetrical three-

story outrigger- braced structure. The method proposed by Er and Iu will be adopted in 

deriving the governing equations and analysis. 

 

1.4 Outline of This Thesis 

Chapter 2 is about the introduction of the research history. Discussion and analysis 

about the symmetrical outrigger braced structure are reviewed. 

Chapter 3 is about the derivation and analysis of the governing equation for an 

unsymmetrical two-stories outrigger-braced structure. 

Chapter 4 is about the comparisons and discussions for different combination of 

structural parameters. 

Chapter 5 gives some conclusions and recommendation. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Research History 

The research for outrigger braced structure began in the mid of 1970s. Taranath 

(1974) assumed that the outrigger can reduce the sway of structure and introduced a simple 

method of analysis. It was found out that the optimum locations of outrigger is 0.445 of the 

structure’s height from the top of it. Afterwards, McNabb et al (1975) expanded the study 

from the structure with one outrigger to the structure with two outriggers and confirmed 

the result of Taranath’s research about optimum outrigger location. In addition, it was 

concluded that the optimum locations of the two outriggers are 0.312 and 0.685, 

respectively, of the height from the top of the structure. 

A general solution for optimum locations of outriggers of multi-story structure were 

proposed by Stafford and Nwaka (1980). Meanwhile, Salim (1980) discovered that the 

flexibility of outriggers has an influence on the total drift and core moment for maximum 

reduction in drift. After one year, Smith and Salim (1981) improved their study and 

introduced a non-dimensional characteristic parameter ω. This parameter is related to 

bending and racking shear stiffness of the braced frame and outriggers. Later, Boggs and 

Casparini (1983) found out that the optimum locations of outriggers change towards the 

top in the situation that non-prismatic columns and walls are used. In 1987, Rutenberg 

investigated the performance of the drift reduction in uniform and non-uniform belted 

structures with the rigid outriggers under several lateral load distributions. Chan and Kuang 

(1989) were the first people who carried out the studies on the effect of intermediate 

stiffening beam at an arbitrary level along the height of the structure. They revealed that 

the specific position of this stiffening beam can significantly influence the behavior of the 

structure. 
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In 1991, Ding discussed the effects of stiffness ratios of core outrigger and core 

columns on the optimum locations of an outrigger-braced structures as well as the reduction 

of top drift. Afterward, Stafford Smith et al. (1996) did the research about the influence of a 

façade rigger on the behavior in a structure. Taranath (1998) discussed the optimum 

locations of two outrigger system. He mentioned that core in a tall building may have 

double side outriggers or it may only have one side outriggers. This leads to an unsymmetrical 

outrigger braced structure. 

The studies about outrigger-braced structures continues in the 21st century. 

Hoenderkamp and Snijder (2000) suggested that façade rigger braced high rise structures 

only need one additional parameter – the racking shear stiffness of the façade rigger. In 

2003, Wu and Li claimed that the optimum location of an outrigger under triangularly 

horizontal distribution load can have four to five percent higher locations than those under 

the uniform load. Later, Lee et al. (2008) focused his research on deriving the governing 

equations for the wall frame structures under the lateral loads. He built a model to analyze 

the lateral drift of the wall frame structures with outriggers. Hoenderkamp (2008) presented 

a simple method to study the preliminary design of the outrigger-braced high-rise shear 

walls. Afterward, Er and Iu (2009) proposed a new method to formulate the governing 

equations based on the compatibility of columns axial deformation and the deformation and 

the solution procedure is more comprehensible and easier for analyzing the outrigger-

braced structures. 
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2.2 Assumptions for Analysis 

According to Smith and Coull (1911), the assumptions for analyzing the outrigger-

braced structures are as follows. 

1. The structure is linearly elastic. 

2. Only axial forces are induced in columns. 

3. Outriggers are rigidly attached to core and core is rigidly attached to foundation. 

4. Sectional properties of the core, columns and outriggers are uniform throughout the 

height of structure. 

 

2.3 Theory of Analyzing Outrigger-braced Structures (Adapted from Smith and Coull 

1911) 

Smith and Coull (1911) raised the governing equation about the symmetric 

outrigger- braced structures by using moment area method. With the moment area 

method, the rotational compatibility at the junctions of the core and the outrigger is 

considered. 

 

2.3.1 Compatibility Analysis of a Two-outrigger Structure 

The model for analysis is the two-outrigger structure shown in Fig. 2.1, subjected 

to a uniformly distributed horizontal load. 

The bending moment diagram for the core, shown in Fig. 2.5, consists of the 

external load moment diagram, which, shown in Fig. 2.2, is induced by the outrigger 

restraining moments that, for each outrigger, are introduced at the outrigger level and 
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extend uniformly down to the base, as shown in Fig. 2.3 and Fig. 2.4. From the moment-

area method which is shown in Fig. 2.1, the core rotations at levels 1 and 2 are, 

respectively, 

𝜃! =
1
𝐸𝐼
9 :

𝑞𝑥"

2
−𝑀!?𝑑𝑥

#!

#"
+
1
𝐸𝐼
9 :

𝑞𝑥"

2
−𝑀! −𝑀"?𝑑𝑥

$

#!
(2.1) 

𝜃" =
1
𝐸𝐼
9 :

𝑞𝑥"

2
−𝑀! −𝑀"?𝑑𝑥

$

#!
(2.2) 

where EI and H are the flexural rigidity and total height of the core, q is the intensity of 

horizontal loading, 𝑥! and 𝑥" are the respective heights of outriggers 1 and 2 from the top 

of the core, and 𝑀! and 𝑀" are their respective restraining moments on the core. 

Expressions for the rotations of the outriggers at the points where they are 

connected to the core (i.e., at the ‘inboard’ ends) will be developed in the following. Each 

rotation consists of two components: one allowed by the differential axial deformations of 

the columns, and the other by the outriggers bending under the action of the column 

forces at their ‘outboard’ ends. 

 

The rotation of the ‘inboard’ ends of the outrigger at level 1 is 

𝜃! =
2𝑀!(𝐻 − 𝑥!)
𝑑"(𝐸𝐴)%

+
2𝑀"(𝐻 − 𝑥")
𝑑"(𝐸𝐴)%

+
𝑀!𝑑

12(𝐸𝐼)&
(2.3) 

For the outrigger at level 2, 

𝜃! =
2(𝑀! +𝑀")(𝐻 − 𝑥")

𝑑"(𝐸𝐴)%
+

𝑀"𝑑
12(𝐸𝐼)&

(2.4) 
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Figure 2.1 Two-outrigger structure 
 
 
 

    

Figure 2.2 External moment diagram    
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Figure 2.3 M1 diagram 

 
 

      

Figure 2.4 M2 diagram    
 
 

 

 

Figure 2.5 Core resultant moment diagram 
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where  (𝐸𝐴)% is the axial rigidity of the column and '
"
 is its horizontal distance from the 

centroid of the core. (𝐸𝐼)&	is the effective flexural rigidity of the outrigger, which is 

shown in Fig. 2.7, allowing for the wide-column effect of the core. It can be obtained 

from the actual flexural rigidity of the outrigger (𝐸𝐼′)& as 

(𝐸𝐼)& = I1 +
𝑎
𝑏L

(
(𝐸𝐼))& (2.5) 

as shown in Fig. 2.6. 

 

Figure 2.6 Outrigger attached to edge of core 
 

 

Figure 2.7 Equivalent outrigger beam attached to centroid of core 
 

Equating the rotations of the core and outrigger at level 1 with Eqs. (2.1) and Eqs. (2.3), it 

gives 

2𝑀!(𝐻 − 𝑥!)
𝑑"(𝐸𝐴)%

+
2𝑀"(𝐻 − 𝑥")
𝑑"(𝐸𝐴)%

+
𝑀!𝑑

12(𝐸𝐼)&

=
1
𝐸𝐼 9 :

𝑞𝑥"

2 −𝑀!?𝑑𝑥
#!

#"
+
1
𝐸𝐼 9 :

𝑞𝑥"

2 −𝑀! −𝑀"?𝑑𝑥
$

#!
(2.6)
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Similarly, for the rotations at level 2, equating Eqs. (2.2) and Eqs. (2.4) gives 

2(𝑀! +𝑀")(𝐻 − 𝑥")
𝑑"(𝐸𝐴)%

+
𝑀"𝑑

12(𝐸𝐼)&
=
1
𝐸𝐼
9 :

𝑞𝑥"

2
−𝑀! −𝑀"?𝑑𝑥

$

#!
	(2.7) 

Rewriting Eqs. (14.6) and Eqs. (14.7) gives 

𝑀![𝑆! + 𝑆(𝐻 − 𝑥!)] + 𝑀"𝑆(𝐻 − 𝑥") =
q
6EI

(𝐻( − 𝑥!() 	(2.8) 

And 

𝑀!𝑆(𝐻 − 𝑥") + 𝑀"[𝑆! + 𝑆(𝐻 − 𝑥")] =
q
6EI

(𝐻( − 𝑥"() 	(2.9) 

where 𝑆 and 𝑆! are 

𝑆 =
1
𝐸𝐼 +

2
𝑑"(𝐸𝐴)%

	(2.10) 

𝑆! =
𝑑

12(𝐸𝐼)&
(2.11) 

 

2.3.2 Analysis of Force 

The solution of Eqs. (2.8) and Eqs. (2.9) gives the restraining moment applied to 

the core by the outrigger at level 1 

𝑀! =
q
6EI

W
𝑆!(𝐻( − 𝑥!() + 𝑆(𝐻 − 𝑥")(𝑥"( − 𝑥!()

𝑆!" + 𝑆!𝑆(2𝐻 − 𝑥! − 𝑥") + 𝑆"(𝐻 − 𝑥")(𝑥" − 𝑥!)
X (2.12) 

and the moment applied to the core by the outrigger at level 2 

𝑀" =
q
6EI

W
𝑆!(𝐻( − 𝑥"() + 𝑆(𝐻 − 𝑥!)(𝐻( − 𝑥"() − (𝐻 − 𝑥")(𝐻( − 𝑥!()

𝑆!" + 𝑆!𝑆(2𝐻 − 𝑥! − 𝑥") + 𝑆"(𝐻 − 𝑥")(𝑥" − 𝑥!)
X (2.13) 

 

Having the outrigger restraining moments 𝑀!	and 𝑀", the resulting moment in the core, 

which is shown in Fig. 2.5, can be expressed generally by 

𝑀! =
q𝑥"

2
−𝑀! −𝑀" (2.14) 

In which 𝑀! is included only for 𝑥 > 𝑥!, and 𝑀" is included only for 𝑥 > 𝑥". 
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The forces in the columns due to the outrigger action are ±*"
'

 for 𝑥! < 𝑥 < 	𝑥" 

and (*",*!)
'

 for 𝑥	 ≥ 	 𝑥". 

The maximum moment in the outriggers is then *".
'

 for level 1 and *!.
'

 for level 2, 

where b is the net length of the outrigger, which is shown in Fig. 2.1. 

 

2.3.3 Analysis of Horizontal Deflections 

The horizontal deflections of the structure may be determined from the resulting 

bending moment diagram for the core by using the moment-area method. A general 

expression for deflections throughout the height could be written; it would, however, be 

very complicated. Concentrating, therefore, on the top drift only, this may be expressed as 

∆/=
1
𝐸𝐼 \

𝑞
8𝐻

0 −
1
2𝑀!(𝐻" − 𝑥!") −

1
2𝑀"(𝐻" − 𝑥"")] (2.15) 

where the first term on the right-hand side represents the top drift of the core acting as a 

free vertical cantilever subjected to the full external loading, while the two parts of the 

second term represent the reductions in the top drift due to the outrigger restraining 

moments 𝑀! and 𝑀". 
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2.3.4 Restraining Moments 

The restraining moments for a uniform structure subjected to uniformly 

distributed loading may be expressed concisely in matrix form for simultaneous solution 

by computer as: 

⎩
⎪
⎨

⎪
⎧
𝑀!
𝑀"
⋮
𝑀1
⋮
𝑀2⎭
⎪
⎬

⎪
⎫

=
q
6EI 

⎩
⎪
⎨

⎪
⎧
𝑆! + 𝑆(𝑋 − 𝑋!)
𝑆(𝐻 − 𝑋")

⋮
𝑆(𝐻 − 𝑋1)

⋮
𝑆(𝐻 − 𝑋2)

𝑆(𝐻 − 𝑋")
𝑆! + 𝑆(𝑋 − 𝑋!)

⋮
𝑆(𝐻 − 𝑋1)

⋮
𝑆(𝐻 − 𝑋2)

⋯
⋯
⋮
⋯
⋮
⋯

𝑆(𝐻 − 𝑋1)
𝑆(𝐻 − 𝑋1)

⋮
𝑆! + 𝑆(𝑋 − 𝑋!)

⋮
𝑆(𝐻 − 𝑋2)

⋯
⋯
⋮
⋯
⋮
⋯

𝑆(𝐻 − 𝑋2)
𝑆(𝐻 − 𝑋2)

⋮
𝑆(𝐻 − 𝑋2)

⋮
𝑆! + 𝑆(𝑋 − 𝑋!)⎭

⎪
⎬

⎪
⎫
3!

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐻

( − 𝑋!(

𝐻( − 𝑋"(
⋮

𝐻( − 𝑋1(
⋮

𝐻( − 𝑋2(⎭
⎪⎪
⎬

⎪⎪
⎫

(2.16) 

in which n is the number of levels of outriggers. Eqs. (2.16) requires that the properties of 

the structure, the levels of the outriggers, and the magnitude of loading be specified. 

 

A general expression for the moment in the core between outriggers j and j + 1 is 

then 

𝑀# =
q𝑥"

2
−h𝑀1

4

25!

	(2.17) 

In the region between the top of the structure and the first outrigger from the top, 

the second term on the right-hand side of Eq. (2.17) equals zero. 

 



 

 
15 

2.3.5 Horizontal Deflections 

Substitution the restraining moments 𝑀! to 𝑀2, from the solution of Eq. (2.16) 

into Eq. (14.18) gives the resultant deflection at the top of the structure as 

∆/=
𝑞𝐻0

8𝐸𝐼 −
1
2𝐸𝐼h𝑀1(𝐻" − 𝑥1")

2

15!

(2.18) 

 

2.3.6 Optimum Locations of Outriggers 

The optimum levels of the outriggers are determined by minimizing the top drift. 

The derivative of the right-hand side of Eq. (2.18) with respect first to 𝑥4 being equal to 

zero gives the following governing equation for determining the optimum levels of the 

outriggers: 

6∆#
6#"

= (𝐻" − 𝑥!")
6*"
6#"

+ (𝐻" − 𝑥"")
6*!
6#"

− 2𝑥!𝑀! = 0 (2.19)  

and 

6∆#
6#!

= (𝐻" − 𝑥!")
6*"
6#!

+ (𝐻" − 𝑥"")
6*!
6#!

− 2𝑥"𝑀" = 0 (2.20)  

 

2.3.7 Introduced the Parameters 

 In order to simplifying and generalize the expressions, parameters  𝜀!, 𝑎𝑛𝑑	𝜀"are 

introduced as the ratio between the total height of the structure and the location of each 

story. The parameters 𝛼, 𝛽 and 𝜔 can reduce the complexity of the governing equations. 

Ratio of outrigger locations of second story and total height: 𝜀! =
#"
$

 

Ratio of outrigger locations of first story and total height: 𝜀" =
#!
$

 

Flexural rigidity ratio of core to column (non-dimensional): 𝛼 = 89

(8:)$
%!
!

 

Flexural rigidity ratio of core to outrigger (non-dimensional): 𝛽 = 89
(89)&

'
$
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Relative rigidity between core column system and outriggers (non-dimensional):  

𝜔 =
𝛽

12(1 + 𝛼) 

The parameter 𝜔, which is non-dimensional, is the characteristic structural parameter for 

a uniform structure with flexible outriggers. It is useful in that it allows various aspects of 

the behavior of outrigger structures to be expressed in a very concise form. 

 

2.3.8 Performance of Outrigger Structures 

The analysis for uniform structures presented earlier is useful in estimating the forces and 

drift for preliminary design. It is of further value in providing general information about 

the most efficient arrangement of the structure. The optimum locations are shown in the 

following Fig. 2.8: 

 

Figure 2.8 Optimum outrigger locations for three-outrigger structure 
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2.4 Formulation of Governing Equations with Force Method (Er and Iu 2009) 

The new governing equations proposed by Er and Iu (2009) are more adaptable. 

The new method sets the internal forces in columns as unknown and solves them with force 

method. The new governing equation can be extended for analyzing more complicated 

outrigger braced structures. 

 

2.4.1 The Formulation of New Governing Equations 

Considering the structure with two outriggers and acted by uniformly distributed 

lateral load as shown in Fig. 2.9. In order to analyze the internal forces of the structure, 

the axial forces in the columns are taken as unknowns in the structural analysis. Denote 

the axial force in the columns between ith outrigger and (i+1)th outrigger as 𝑁1. Cut each 

column at a cross section of the column and hence each column is separated into two 

parts. Each part of the column is applied by an axial force as shown in Fig. 2.9 then the 

compatibility equations can be formulated by the fact that there is no relative axial 

displacement on the cut cross sections. The following compatibility equations can be 

formulated in terms of the axial forces in the columns with force method. 
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Figure 2.9 Unknown axial forces in analyzing outrigger-braced structures 

[𝑠(𝑥" − 𝑥!) + 2𝑠!]𝑑𝑁! − 𝑠!𝑑𝑁" =
;<#!'3#"'=

>89
(2.21)  

−𝑠!𝑑𝑁! + [𝑠(𝐻 − 𝑥") + 𝑠!]𝑑𝑁" =
;<$3#!'=

>89
(2.22)  

or 

𝑁! =
𝑞

6𝐸𝐼𝑑
𝑠!(𝐻( − 𝑥!() + 𝑠(𝐻 − 𝑥")(𝑥"( − 𝑥!()

𝑠!" + 𝑠!𝑠(2𝐻 − 𝑥! − 𝑥") + 𝑠"(𝐻 − 𝑥")(𝑥" − 𝑥!)
(2.23) 

𝑁" =
𝑞

6𝐸𝐼𝑑
𝑠!(2𝐻 − 𝑥"( − 𝑥!() + 𝑠(𝑥" − 𝑥!)(𝐻( − 𝑥"()

𝑠!" + 𝑠!𝑠(2𝐻 − 𝑥! − 𝑥") + 𝑠"(𝐻 − 𝑥")(𝑥" − 𝑥!)
(2.24) 

 

The maximum bending moments in the outriggers 1 and 2 are, respectively, 

𝑀?@#! = 𝑁!𝑏 (2.25) 

𝑀?@#" = (𝑁" − 𝑁!)𝑏#(2.26) 

where b is the net length of outrigger. 

 

Between outrigger i and outrigger i+1, the bending moment in the core is 

𝑚1(𝑥) =
1
2 𝑞𝑥

" − 𝑁1𝑑			(𝑖 = 0,1,2) (2.27) 



 

 
19 

The top drift is 

∆/=
1
𝐸𝐼 \

𝑞
8𝐻

0 −
1
2𝑁!𝑑

(𝑥"" − 𝑥!") −
1
2𝑁"𝑑

(𝐻" − 𝑥"")] (2.28) 

 

For the structure with n outriggers: 

⎩
⎪
⎨

⎪
⎧
𝑁!
𝑁"
⋮

𝑁23!
𝑁2 ⎭

⎪
⎬

⎪
⎫

= ;
>89'

 

⎩
⎪
⎨

⎪
⎧𝑠(𝑥" − 𝑥!) + 2𝑠!−𝑠!

⋮
0
0

		

−𝑠!
𝑠(𝑥( − 𝑥") + 2𝑠!

⋮
⋯
⋯

		

0
−𝑠!
⋮
−𝑠!
0

		

⋯
⋯
⋮

𝑠(𝑥2 − 𝑥23!) + 2𝑠!
−𝑠!

		

0
0
⋮
−𝑠!

𝑠(𝐻 − 𝑥2) + 2𝑠!⎭
⎪
⎬

⎪
⎫
3!

 

⎩
⎪
⎨

⎪
⎧ 𝑥"( − 𝑥!(

𝑥(( − 𝑥"(
⋮

𝑥2( − 𝑥23!(

𝐻( − 𝑥2( ⎭
⎪
⎬

⎪
⎫

(2.29) 

 

Between i th outrigger and (i+1)th outrigger or ground, the bending moment in core is 

𝑚1(𝑥) =
1
2 𝑞𝑥

" − 𝑁1𝑑			(𝑖 = 0,1,2, …𝑛) 	(2.31) 

The top drift is 

∆/=
𝑞𝐻0

8𝐸𝐼 −
𝑑
2𝐸𝐼h

(𝑥1,!" − 𝑥1")
2

15!

𝑁1 (2.32) 

where 𝑥2,! = 𝐻. 

 

The optimum levels of the outriggers are also determined by minimizing the top 

drift. The derivative of the right-hand side of Eq. (2.32) with respect to 𝑥4 being equal to 
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zero gives the following governing equations for determining the optimum levels of the 

outriggers 

h(𝑥1,!" − 𝑥1")
𝜕𝑁1
𝜕𝑥4

− 2𝑥4s𝑁4 − 𝑁43!t = 0
2

15!

			(𝑖 = 0,1,2, …𝑛) (2.33) 

where 𝑥2,! = 𝐻 and 𝑁/ = 0 

 

2.4.2 Relation Between the Conventional and New Governing Equations 

It is evident that the restraining moment 𝑀1 is related to the axial forces in the 

columns by 

𝑀1 = (𝑁1 − 𝑁13!)𝑑. (𝑖 = 0,1,2, …𝑛) (2.34)  

where 𝑁/ = 0 

 

Eq. (2.34) can be verified with the expressions of 𝑀1 and the expressions of the 

axial forced in the columns. Numerical analysis with the above derived equations also 

verified the relation expressed by Eq. (2.34). 
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CHAPTER 3 GOVERNING UNSYMETRICAL OUTRIGGER-

BRACED STRUCTURE  

3.1 Governing Equation for Unsymmetrical Outrigger-braced Structures 

In this project, the method proposed by Er and Iu will be used in formulating the 

governing equations for analyzing an unsymmetrical outrigger braced structure with three 

stories. A three-stories unsymmetrical outrigger-braced structure is used to demonstrate the 

analysis as shown in Fig. 3.1. 

 

 

Figure 3.1 Unknown axial forces in an unsymmetrical three-story outrigger-braced structure 
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3.1.1 Axial Forces in Column 

The structure with two outriggers and acted by uniformly distributed lateral load 

are shown in Fig. 3.2. In order to analyze the internal forces of this structure, the axial 

forces in the columns are taken as unknowns in the structural analysis. 

 

Figure 3.2 Moment diagram when and uniformly distributed load is applied on the structure 

With the force method, it is assumed that the unknown axial force equals to 1. The 

bending moment diagrams due to the unit axial force pairs are shown in Fig. 3.3 to 

Fig.3.6. 
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Figure 3.3 Moment diagram when N1=1 is applied on the structure 
 

 

Figure 3.4 Moment diagram when N2=1 is applied on the structure 
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Figure 3.5 Moment diagram when N3=1 is applied on the structure 
 

 

Figure 3.6 Moment diagram of N4=1 is applied on the structure 
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Figure 3.7 Moment diagram of N5=1 is applied on the structure 

 

 

Figure 3.8 Moment diagram of N6=1 is applied on the structure 
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With force method, the relative displacement at the cuts are given in the following. 

∆!= ∆!/ + ∆!! + ∆!" + ∆!( + ∆!0 + ∆!A + ∆!>

= ∆!/ + ∱!!𝑁! + ∱!"𝑁" + ∱!(𝑁( + ∱!0𝑁0 + ∱!A𝑁A + ∱!>𝑁> 

∆"= ∆"/ + ∆"! + ∆"" + ∆"( + ∆"0 + ∆"A + ∆">

= ∆"/ + ∱"!𝑁! + ∱""𝑁" + ∱"(𝑁( + ∱"0𝑁0 + ∱"A𝑁A + ∱">𝑁> 

∆(= ∆(/ + ∆(! + ∆(" + ∆(( + ∆(0 + ∆(A + ∆(>

= ∆(/ + ∱(!𝑁! + ∱("𝑁" + ∱((𝑁( + ∱(0𝑁0 + ∱(A𝑁A + ∱(>𝑁> 

∆0= ∆0/ + ∆0! + ∆0" + ∆0( + ∆00 + ∆0A + ∆0>

= ∆0/ + ∱0!𝑁! + ∱0"𝑁" + ∱0(𝑁( + ∱00𝑁0 + ∱0A𝑁A + ∱0>𝑁> 

∆A= ∆A/ + ∆A! + ∆A" + ∆A( + ∆A0 + ∆AA + ∆A>

= ∆A/ + ∱A!𝑁! + ∱A"𝑁" + ∱A(𝑁( + ∱A0𝑁0 + ∱AA𝑁A + ∱A>𝑁> 

∆>= ∆>/ + ∆>! + ∆>" + ∆>( + ∆>0 + ∆>A + ∆>>

= ∆>/ + ∱>!𝑁! + ∱>"𝑁" + ∱>(𝑁( + ∱>0𝑁0 + ∱>A𝑁A + ∱>>𝑁> 

 

The relative displacement of the cross section at the cut 1 due to the uniformly 

distributed loading q is 

∆!/= −
𝑞𝑑!
6𝐸𝐼

(𝑥"( − 𝑥!() (3.1) 

 

The relative displacement of the cross section at the cut 2 due to the uniformly 

distributed loading q is 

∆"/= −
𝑞𝑑"
6𝐸𝐼

(𝑥"( − 𝑥!() (3.2) 
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The relative displacement of the cross section at the cut 3 due to the uniformly 

distributed loading q is 

∆(/= −
𝑞𝑑!
6𝐸𝐼

(𝑥(( − 𝑥"() (3.3) 

 

The relative displacement of the cross section at the cut 4 due to the uniformly 

distributed loading q is 

∆0/= −
𝑞𝑑"
6𝐸𝐼

(𝑥(( − 𝑥"() (3.4) 

 

The relative displacement of the cross section at the cut 5 due to the uniformly 

distributed loading q is 

∆A/= −
𝑞𝑑!
6𝐸𝐼

(𝐻( − 𝑥(() (3.5) 

  

The relative displacement of the cross section at the cut 6 due to the uniformly 

distributed loading q is 

∆>/= −
𝑞𝑑"
6𝐸𝐼

(𝐻( − 𝑥(() (3.6) 

 

The relative displacement of the cross section at the cut 1 due to the unit axial 

force 𝑁1=1 is  

∱!! =
2𝑑!

(

3(𝐸𝐼)&
+
𝑑!

"

𝐸𝐼
(𝑥" − 𝑥!) +

1
(𝐸𝐴)%

(𝑥" − 𝑥!) (3.7) 
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The relative displacement of the cross section at the cut 2 due to the unit axial 

force 𝑁1=1 is  

∱!" = ∱"! =
𝑑!𝑑"
𝐸𝐼

(𝑥" − 𝑥!) (3.8) 

 

The relative displacement of the cross section at the cut 3 due to the unit axial 

force 𝑁1=1 is 

∱!( = ∱(! = −
𝑑!

(

3(𝐸𝐼)&
(3.9) 

 

The relative displacement of the cross section at the cut 4 due to the unit axial 

force 𝑁1=1 is 

∱!0 = ∱0! = 0 (3.10) 

 

The relative displacement of the cross section at the cut 5 due to the unit axial 

force 𝑁1=1 is 

∱!A = ∱A! = 0 (3.11) 

  

The relative displacement of the cross section at the cut 6 due to the unit axial 

force 𝑁1=1 is 

∱!> = ∱>! = 0 (3.12) 
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The relative displacement of the cross section at the cut 2 due to the unit axial 

force 𝑁2=1 is 

∱"" =
2𝑑"

(

3(𝐸𝐼)&
+
𝑑"

"

𝐸𝐼
(𝑥" − 𝑥!) +

1
(𝐸𝐴)%

(𝑥" − 𝑥!) (3.13) 

 

The relative displacement of the cross section at the cut 3 due to the unit axial 

force 𝑁2=1 is 

∱"( = ∱(" = 0 (3.14) 

  

The relative displacement of the cross section at the cut 4 due to the unit axial 

force 𝑁2=1 is 

∱"0 = ∱0" = −
𝑑"

(

3(𝐸𝐼)&
(3.15) 

  

The relative displacement of the cross section at the cut 5 due to the unit axial 

force 𝑁2=1 is 

∱"A = ∱A" = 0 (3.16) 

 

The relative displacement of the cross section at the cut 6 due to the unit axial 

force 𝑁2=1 is 

∱"> = ∱>" = 0 (3.17) 
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The relative displacement of the cross section at the cut 3 due to the unit axial 

force 𝑁3=1 is 

∱(( =
2𝑑!

(

3(𝐸𝐼)&
+
𝑑!

"

𝐸𝐼
(𝑥( − 𝑥") +

1
(𝐸𝐴)%

(𝑥( − 𝑥") (3.18) 

  

The relative displacement of the cross section at the cut 4 due to the unit axial 

force 𝑁3=1 is 

∱(0 = ∱0( =
𝑑!𝑑"
𝐸𝐼

(𝑥( − 𝑥") 	(3.19) 

 

The relative displacement of the cross section at the cut 5 due to the unit axial 

force 𝑁3=1 is 

∱(A = ∱A( = −
𝑑!

(

3(𝐸𝐼)&
(3.20) 

  

The relative displacement of the cross section at the cut 6 due to the unit axial 

force 𝑁3=1 is 

∱(> = ∱>( = 0 	(3.21) 

  

The relative displacement of the cross section at the cut 4 due to the unit axial 

force 𝑁4=1 is 

∱00 =
2𝑑"

(

3(𝐸𝐼)&
+
𝑑"

"

𝐸𝐼
(𝑥( − 𝑥") +

1
(𝐸𝐴)%

(𝑥( − 𝑥") (3.22) 
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The relative displacement of the cross section at the cut 5 due to the unit axial 

force 𝑁4=1 is 

∱0A = ∱A0 = 0 (3.23) 

 

The relative displacement of the cross section at the cut 6 due to the unit axial 

force 𝑁4=1 is 

∱0> = ∱>0 = −
𝑑"

(

3(𝐸𝐼)&
(3.24) 

  

The relative displacement of the cross section at the cut 5 due to the unit axial 

force 𝑁5=1 is 

∱AA =
𝑑!

(

3(𝐸𝐼)&
+
𝑑!

"

𝐸𝐼
(𝐻 − 𝑥() +

1
(𝐸𝐴)%

(𝐻 − 𝑥() (3.25) 

 

The relative displacement of the cross section at the cut 6 due to the unit axial 

force 𝑁5=1 is 

∱A> = ∱>A =
𝑑!𝑑"
𝐸𝐼

(𝐻 − 𝑥() (3.26) 

 

The relative displacement of the cross section at the cut 6 due to the unit axial 

force 𝑁6=1 is 

∱>> =
𝑑"

(

3(𝐸𝐼)&
+
𝑑"

"

𝐸𝐼
(𝐻 − 𝑥() +

1
(𝐸𝐴)%

(𝐻 − 𝑥() (3.27) 
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For the force method, there is no relative displacement at a cut, hence: 

∵ ∆!= ∆"= ∆(= ∆0= ∆A= ∆>= 0 (3.28)  

∴ ∆!/ + ∱!!𝑁! + ∱!"𝑁" + ∱!(𝑁( + ∱!0𝑁0 + ∱!A𝑁A + ∱!>𝑁> (3.29)  

				∆"/ + ∱"!𝑁! + ∱""𝑁" + ∱"(𝑁( + ∱"0𝑁0 + ∱"A𝑁A + ∱">𝑁> (3.30) 

				∆(/ + ∱(!𝑁! + ∱("𝑁" + ∱((𝑁( + ∱(0𝑁0 + ∱(A𝑁A + ∱(>𝑁> (3.31)  

				∆0/ + ∱0!𝑁! + ∱0"𝑁" + ∱0(𝑁( + ∱00𝑁0 + ∱0A𝑁A + ∱0>𝑁> (3.32)  

				∆A/ + ∱A!𝑁! + ∱A"𝑁" + ∱A(𝑁( + ∱A0𝑁0 + ∱AA𝑁A + ∱A>𝑁> (3.33)  

				∆>/ + ∱>!𝑁! + ∱>"𝑁" + ∱>(𝑁( + ∱>0𝑁0 + ∱>A𝑁A + ∱>>𝑁> (3.34) 

  

or 

−
𝑞𝑑!
6𝐸𝐼

(𝑥"( − 𝑥!() + W
2𝑑!

(

3(𝐸𝐼)&
+
𝑑!

"

𝐸𝐼
(𝑥" − 𝑥!) +

1
(𝐸𝐴)%

(𝑥" − 𝑥!)X𝑁! +

\
𝑑!𝑑"
𝐸𝐼

(𝑥" − 𝑥!)] 𝑁" − W
𝑑!

(

3(𝐸𝐼)&
X 𝑁( = 0 (3.35)

 

 

−
𝑞𝑑"
6𝐸𝐼

(𝑥"( − 𝑥!() + \
𝑑!𝑑"
𝐸𝐼

(𝑥" − 𝑥!)]𝑁! +

W
2𝑑"

(

3(𝐸𝐼)&
+
𝑑"

"

𝐸𝐼
(𝑥" − 𝑥!) +

1
(𝐸𝐴)%

(𝑥" − 𝑥!)X𝑁" − W
𝑑"

(

3(𝐸𝐼)&
X 𝑁0 = 0 (3.36)

 

 

−
𝑞𝑑!
6𝐸𝐼

(𝑥(( − 𝑥"() − W
𝑑!

(

3(𝐸𝐼)&
X 𝑁! +

W
2𝑑!

(

3(𝐸𝐼)&
+
𝑑!

"

𝐸𝐼
(𝑥( − 𝑥") +

1
(𝐸𝐴)%

(𝑥( − 𝑥")X 𝑁( +

\
𝑑!𝑑"
𝐸𝐼

(𝑥( − 𝑥")] 𝑁0 − W
𝑑!

(

3(𝐸𝐼)&
X 𝑁A = 0 (3.37)
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−
𝑞𝑑"
6𝐸𝐼

(𝑥(( − 𝑥"() − W
𝑑"

(

3(𝐸𝐼)&
X𝑁" + \

𝑑!𝑑"
𝐸𝐼

(𝑥( − 𝑥")]𝑁( +

W
2𝑑"

(

3(𝐸𝐼)&
+
𝑑"

"

𝐸𝐼
(𝑥( − 𝑥") +

1
(𝐸𝐴)%

(𝑥( − 𝑥")X 𝑁0 − W
𝑑"

(

3(𝐸𝐼)&
X 𝑁> = 0 (3.38)

 

 

−
𝑞𝑑!
6𝐸𝐼

(𝐻( − 𝑥(() − W
𝑑!

(

3(𝐸𝐼)&
X 𝑁( +

W
𝑑!

(

3(𝐸𝐼)&
+
𝑑!

"

𝐸𝐼
(𝐻 − 𝑥() +

1
(𝐸𝐴)%

(𝐻 − 𝑥()X𝑁A + \
𝑑!𝑑"
𝐸𝐼

(𝐻 − 𝑥()]𝑁> = 0 (	3.39)
 

 

−
𝑞𝑑"
6𝐸𝐼

(𝐻( − 𝑥(() − W
𝑑"

(

3(𝐸𝐼)&
X 𝑁0 + \

𝑑!𝑑"
𝐸𝐼

(𝐻 − 𝑥()] 𝑁A +

W
𝑑"

(

3(𝐸𝐼)&
+
𝑑"

"

𝐸𝐼
(𝐻 − 𝑥() +

1
(𝐸𝐴)%

(𝐻 − 𝑥()X𝑁> = 0 (3.40)
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From Eqs. (3.35) to Eqs. (3.40), 𝑁! to 𝑁> can be calculated as 

⎩
⎪
⎨

⎪
⎧
𝑵𝟏
𝑵𝟐
𝑵𝟑
𝑵𝟒
𝑵𝟓
𝑵𝟔⎭
⎪
⎬

⎪
⎫

= 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝟐𝒅𝟏

𝟑

𝟑(𝑬𝑰)𝒐
+
𝒅𝟏

𝟐

𝑬𝑰
(𝒙𝟐 − 𝒙𝟏) +

𝟏
(𝑬𝑨)𝒄

(𝒙𝟐 − 𝒙𝟏)

𝒅𝟏𝒅𝟐
𝑬𝑰

(𝒙𝟐 − 𝒙𝟏)

−
𝒅𝟏

𝟑

𝟑(𝑬𝑰)𝒐
𝟎
𝟎
𝟎

𝒅𝟏𝒅𝟐
𝑬𝑰

(𝒙𝟐 − 𝒙𝟏)

𝟐𝒅𝟐
𝟑

𝟑(𝑬𝑰)𝒐
+
𝒅𝟐

𝟐

𝑬𝑰
(𝒙𝟐 − 𝒙𝟏) +

𝟏
(𝑬𝑨)𝒄

(𝒙𝟐 − 𝒙𝟏)

𝟎

−
𝒅𝟐

𝟑

𝟑(𝑬𝑰)𝒐
𝟎
𝟎

−
𝒅𝟏

𝟑

𝟑(𝑬𝑰)𝒐
𝟎

𝟐𝒅𝟏
𝟑

𝟑(𝑬𝑰)𝒐
+
𝒅𝟏

𝟐

𝑬𝑰
(𝒙𝟑 − 𝒙𝟐) +

𝟏
(𝑬𝑨)𝒄

(𝒙𝟑 − 𝒙𝟐)

𝒅𝟏𝒅𝟐
𝑬𝑰

(𝒙𝟑 − 𝒙𝟐)

−
𝒅𝟏

𝟑

𝟑(𝑬𝑰)𝒐
𝟎

 

𝟎

−
𝒅𝟐

𝟑

𝟑(𝑬𝑰)𝒐
𝒅𝟏𝒅𝟐
𝑬𝑰

(𝒙𝟑 − 𝒙𝟐)𝟑

𝟐𝒅𝟐𝟑

𝟑(𝑬𝑰)𝒐
+
𝒅𝟐𝟐

𝑬𝑰
(𝒙𝟑 − 𝒙𝟐) +

𝟏
(𝑬𝑨)𝒄

(𝒙𝟑 − 𝒙𝟐)

𝟎

−
𝒅𝟐𝟑

𝟑(𝑬𝑰)𝒐

𝟎
𝟎

−
𝒅𝟏

𝟑

𝟑(𝑬𝑰)𝒐
𝟎

𝒅𝟏
𝟑

𝟑(𝑬𝑰)𝒐
+
𝒅𝟏

𝟐

𝑬𝑰
(𝑯 − 𝒙𝟑) +

𝟏
(𝑬𝑨)𝒄

(𝑯 − 𝒙𝟑)

𝒅𝟏𝒅𝟐
𝑬𝑰

(𝑯 − 𝒙𝟑)

𝟎
𝟎
𝟎

−
𝒅𝟐

𝟑

𝟑(𝑬𝑰)𝒐
𝒅𝟏𝒅𝟐
𝑬𝑰

(𝑯 − 𝒙𝟑)

𝒅𝟐𝟑

𝟑(𝑬𝑰)𝒐
+
𝒅𝟐𝟐

𝑬𝑰
(𝑯 − 𝒙𝟑) +

𝟏
(𝑬𝑨)𝒄

(𝑯 − 𝒙𝟑)
⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫
&'

 

	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝒒𝒅𝟏
𝟔𝑬𝑰

(𝒙𝟐𝟑 − 𝒙𝟏𝟑)

𝒒𝒅𝟐
𝟔𝑬𝑰

(𝒙𝟐𝟑 − 𝒙𝟏𝟑)

𝒒𝒅𝟏
𝟔𝑬𝑰

(𝒙𝟑𝟑 − 𝒙𝟐𝟑)

𝒒𝒅𝟐
𝟔𝑬𝑰

(𝒙𝟑𝟑 − 𝒙𝟐𝟑)

𝒒𝒅𝟏
𝟔𝑬𝑰

(𝑯𝟑 − 𝒙𝟑𝟑)

𝒒𝒅𝟐
𝟔𝑬𝑰

(𝑯𝟑 − 𝒙𝟑𝟑)⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

(3.41) 
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3.1.2 Bending Moment in the Core and Deflection at Top Drift 

Between building top and outrigger 1: 

𝑚/ =
!
"
𝑞𝑥" (3.42)  

Between building outrigger 1 and outrigger 2: 

𝑚! =
!
"
𝑞𝑥" − 𝑁!𝑑! − 𝑁"𝑑" (3.43)  

Between building outrigger 2 and outrigger 3: 

𝑚" =
!
"
𝑞𝑥" − 𝑁(𝑑! − 𝑁0𝑑" (3.44)  

Between building outrigger 3 and building bottom: 

𝑚( =
1
2𝑞𝑥

" − 𝑁A𝑑! − 𝑁>𝑑" (3.45) 

The top drift is 

∆/=
1
𝐸𝐼
{
𝑞
8
𝐻0 −

𝑑!
2
[𝑁!(𝑥"" − 𝑥!") + 𝑁((𝑥(" − 𝑥"") + 𝑁A(𝐻" − 𝑥(")] −

𝑑"
2
[𝑁"(𝑥"" − 𝑥!") + 𝑁0(𝑥(" − 𝑥"") + 𝑁>(𝐻" − 𝑥(")]} (3.46)

 

 

3.1.3 Numerical Verification of the Results 

In this part, numerical values of the structural parameters are given in order to verify  the 

results obtained by the equations of unknown axial forces. Moment equilibrium at the 

nodes of the shear wall core for each story and the total lateral equilibrium are provided in 

the following. 
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The structural  parameters in the equations are given as follows. 

d1=5,  

d2=10,  

(EI)o=100,  

EI=1000,  

(EA)C=300,  

x1=3,  

x2=6,  

x3=9,  

H=12, 

q=100 

 

Then the axial forces  for Ns are obtained by	

⎩
⎪
⎨

⎪
⎧
𝑵𝟏
𝑵𝟐
𝑵𝟑
𝑵𝟒
𝑵𝟓
𝑵𝟔⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
551/600
3/20
−5/12
0
0
0

3/20
2093/300

0
−10/3
0
0

−5/12
0

551/600
3/20
−5/12
0

0
−10/3
3/20

2093/300
0

−10/3

0
0

−5/12
0

551/600
3/20

0
0
0

−10/3
3/20

2093/300⎭
⎪
⎬

⎪
⎫
9:

⎩
⎪
⎨

⎪
⎧
63/4
63/2
171/4
171/2
333/4
333/2⎭

⎪
⎬

⎪
⎫

 

which gives  

⎩
⎪
⎨

⎪
⎧
𝑵𝟏
𝑵𝟐
𝑵𝟑
𝑵𝟒
𝑵𝟓
𝑵𝟔⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
79.29252343
20.70633777
144.4150032
37.45652851
149.882494
38.53885154⎭

⎪
⎬

⎪
⎫
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The bending moments of the top and bottom at the core wall node on  the third story are 

got, respectively, as 

𝑚999,I&J =
1
2 ∗ 100 ∗ 3

" = 450 

𝑚;;;,=>??>@ =
1
2
∗ 100 ∗ 3A − 79.29252343 ∗ 5 − 20.70633777 ∗ 10 = −153.5259948 

 

The bending moments of the top and bottom at the core wall node on the second story are 

got , respectively, as 

𝑚;;,?>B =
1
2
∗ 100 ∗ 6A − 79.29252343 ∗ 5 − 20.70633777 ∗ 10 = 1196.474005 

𝑚;;,=>??>@ =
1
2
∗ 100 ∗ 6A − 144.4150032 ∗ 5 − 37.45652851 ∗ 10 = 703.3596989 

 

The bending moments of the top and bottom at the core wall node on the first story are 

got, respectively, as 

𝑚;,?>B =
1
2
∗ 100 ∗ 9A − 144.4150032 ∗ 5 − 37.45652851 ∗ 10 = 2953.359699 

𝑚;,=>??>@ =
1
2
∗ 100 ∗ 9A − 149.882494 ∗ 5 − 38.53885154 ∗ 10 = 2915.199015 

 

The bending moments of the left side and right side at the core wall node on the third 

story are got, respectively, as 

𝑚999,KLMI5𝑁!𝑑! = 79.29252343 ∗ 5 = 396.4626171 

𝑚999,N1OPI5𝑁"𝑑" = 20.70633777 ∗ 10 = 207.0633777 
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The bending moment of the left side and right side at the core wall node on the second  

story are got, respectively, as 

𝑚99,KLMI5(𝑁( − 𝑁!)𝑑! = (144.4150032− 79.29252343) ∗ 5 = 325.6123989 

𝑚99,N1OPI5(𝑁0 − 𝑁")𝑑" = (37.45652851− 20.70633777) ∗ 10 = 167.5019074 

 

The bending moment of the left side and right side at the core wall node on the first story 

are got, respectively, as 

𝑚9,KLMI5(𝑁A − 𝑁()𝑑! = (149.882494 − 144.4150032) ∗ 5 = 27.337454 

𝑚9,N1OPI5(𝑁> − 𝑁0)𝑑" = (38.53885154 − 37.45652851) ∗ 10 = 10.8232303 

 

Taking derivative of m with respect to x, the shear force equation can be obtained as 

𝑉(𝑥) = 𝑚)(𝑥) = 𝑞𝑥 

 

Then the shear force at the bottom of the shear wall is 

𝑉(𝐻) = 𝑉(12) = 100 ∗ 12 = 1200 

 

The lateral load applied on the structure is 

𝐹 = 𝑞 ∗ 𝐻 = 100 ∗ 12 = 1200 

 

The moment equilibrium at the core wall node on the third story is checked by 

h𝑚999 = 𝑚999,I&J −𝑚𝐼𝐼𝐼,𝑏𝑜𝑡𝑡𝑜𝑚 −𝑚999,KLMI −𝑚999,N1OPI

= 450 − (−153.5259948) − 396.4626171 − 207.0633777 = 0 
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The moment equilibrium at the core wall node on the second story is checked by 

h𝑚99 = 𝑚99,I&J −𝑚𝐼𝐼,𝑏𝑜𝑡𝑡𝑜𝑚 −𝑚99,KLMI −𝑚99,N1OPI

= 1196.474005− 703.3596989− 325.6123989 − 167.5019074 = 0 

 

The moment equilibrium at the core wall node on the first story is checked by 

h𝑚9 = 𝑚9,I&J −𝑚𝐼,𝑏𝑜𝑡𝑡𝑜𝑚 −𝑚9,KLMI −𝑚9,N1OPI

= 2953.359699− 2915.199015− 27.337454 − 10.8232303 = 0 

 

The total horizontal equilibrium above the first story is checked by 

h𝐹# = 𝐹 − 𝑉(𝐻) = 1200 − 1200 = 0 

 

The moments applied at each node are the lateral forces applied on the structure for 

equilibrium equations are shown in the following figures.  

 

Figure 3.9 Moment equilibrium at the core wall node on third story for verification 

 

 

Figure 3.10 Moment equilibrium at the core wall node on second story for verification 
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Figure 3.11 Moment equilibrium at the core wall node on first story for verification 

 

 

Figure 3.12 Horizontal  equilibrium above the forst story of the structure for verification 

 

From the above verification, it is seen that all the equilibriums are satisfied. It means that 

the equations of Ns and mare correct. 
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3.2 Equation for Optimum Locations 

The optimum locations of the outriggers can be got by minimizing the top drift. Taking 

derivation of ∆/ with respect to 𝑥! and 𝑥" and 𝑥(, it gives 

𝜕∆/
𝜕𝑥!

= −
𝑑!
2𝐸𝐼

\(𝑥"" − 𝑥!")
𝜕𝑁!
𝜕𝑥!

− 2𝑥!𝑁! + (𝑥(" − 𝑥"")
𝜕𝑁(
𝜕𝑥!

+ (𝐻" − 𝑥(")
𝜕𝑁A
𝜕𝑥!

] −

𝑑"
2𝐸𝐼 \

(𝑥"" − 𝑥!")
𝜕𝑁"
𝜕𝑥!

− 2𝑥!𝑁" + (𝑥(" − 𝑥"")
𝜕𝑁0
𝜕𝑥!

+ (𝐻" − 𝑥(")
𝜕𝑁>
𝜕𝑥!

] = 0 (3.47)
 

         

𝜕∆/
𝜕𝑥"

= −
𝑑!
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁!
𝜕𝑥"

+ 2𝑥"𝑁! +																																																																									

(𝑥(" − 𝑥"")
𝜕𝑁(
𝜕𝑥"

− 2𝑥"𝑁( + (𝐻" − 𝑥(")
𝜕𝑁A
𝜕𝑥"

] −

𝑑"
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁"
𝜕𝑥"

+ 2𝑥"𝑁" + (𝑥(" − 𝑥"")
𝜕𝑁0
𝜕𝑥"

−

2𝑥"𝑁0 + (𝐻" − 𝑥(")
𝜕𝑁>
𝜕𝑥"

] = 0 (3.48)

 

 

𝜕∆/
𝜕𝑥(

= −
𝑑!
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁!
𝜕𝑥(

+ (𝑥(" − 𝑥"")
𝜕𝑁(
𝜕𝑥(

+																																																						

2𝑥"𝑁( + (𝐻" − 𝑥(")
𝜕𝑁A
𝜕𝑥(

− 2𝑥(𝑁A] −

𝑑"
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁"
𝜕𝑥(

+ (𝑥(" − 𝑥"")
𝜕𝑁0
𝜕𝑥(

+

2𝑥(𝑁0 + (𝐻" − 𝑥(")
𝜕𝑁>
𝜕𝑥(

− 2𝑥!𝑁>] = 0 (3.49)
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3.3 Analysis for Optimum Locations of Outriggers of Unsymmetrical Structure 

 In order to make the results from numerical analysis represent more general cases, 

the un-dimensional parameters  𝜀!, 𝜀" and 𝜀(	are introduced as the ratio of the total height 

of the structure and the location of each story. The un-dimensional parameter r is 

introduced to reflect the un-symmetry of the structure. The un-dimensional parameters	𝛼, 

𝛽 and 𝜔 are also introduced for more general analysis 

Introduce the parameters 𝜀! =
#"
$

, 𝜀" =
#!
$

, 𝜀( =
#'
$

  and 𝑟 = '!
'"

 

Flexural rigidity ratio of core to column (non-dimensional): 𝛼 = 89
"(8:)$'!

 

Flexural rigidity ratio of core to outrigger (non-dimensional): 𝛽 = "89
(89)&

'
$

  

Then the relative rigidity between core column system and outriggers (non-dimensional) 

is got to be:  

𝜔 =
𝛽

12(1 + 𝛼) 

The parameter 𝜔 is the characteristic structural parameter for a uniform structure with 

flexible outriggers. It is useful in that it allows various aspects of the behavior of 

outrigger structures to be expressed in a very concise form. 

 

Then equations (3.35) – (3.40) can be rewritten as: 

Both sides of the equations are multiplied by 89
$'"!

 

−
𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + \

𝛽
3
+ (𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)]𝑁! +

[𝑟(𝜀" − 𝜀!)]𝑁" − \
𝛽
6
]𝑁( = 0 (3.50)
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−
𝑟𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + [𝑟(𝜀" − 𝜀!)]𝑁! +

W
𝑟(𝛽
3 + 𝑟((𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)X𝑁" − W

𝑟(𝛽
6
X𝑁0 = 0 (3.51)

 

 

−
𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − \

𝛽
6
]𝑁! + \

𝛽
3
+ (𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")]𝑁( +

[𝑟(𝜀( − 𝜀")]𝑁0 − \
𝛽
6
]𝑁A = 0 	(3.52)

 

 

−
𝑟𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − W

𝑟(𝛽
6 X𝑁" + [𝑟(𝜀( − 𝜀")]𝑁( +

W
𝑟(𝛽
3
+ 𝑟"(𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")X𝑁0 − W

𝑟(𝛽
6
X𝑁> = 0 (3.53)

 

 

−
𝑞𝐻"

6𝑑!
(1 − 𝜀(() − \

𝛽
6
]𝑁( + \

𝛽
3
+ (1 − 𝜀() + 2𝛼(1 − 𝜀()] 𝑁A +

[𝑟(1 − 𝜀()]𝑁> = 0 (3.54)
 

 

−
𝑟𝑞𝐻"

6𝑑!
(1 − 𝜀(() − W

𝑟(𝛽
6 X𝑁0 + [𝑟(1 − 𝜀()]𝑁A +

W
𝑟(𝛽
3
+ 𝑟"(1 − 𝜀() + 2𝛼(1 − 𝜀()X𝑁> = 0 (3.55)

 

 

As the expressions of 𝑁!,	𝑁",	𝑁(,	𝑁0,	𝑁A and 𝑁> are very complicate, it is difficult to get 

the derivatives of 𝑁!,	𝑁",	𝑁(,	𝑁0,	𝑁A and 𝑁> with respect to 𝜀!,	𝜀" and 𝜀(. Therefore, the 

equation �∱ �{𝑁} = {𝑃} is used in getting the derivatives. 
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3.3.1 Derivation of 𝑵𝟏	~	𝑵𝟔 with Respect to 𝜺𝟏 

−
𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + \

𝛽
3
+ (𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)]𝑁! +

[𝑟(𝜀" − 𝜀!)]𝑁" − \
𝛽
6
]𝑁( = 0 (3.50)

 

gives 

𝑞𝐻"

2𝑑!
𝜀!" − [1 + 2𝛼]𝑁! − [𝑟]𝑁" + ∱!!

𝜕𝑁!
𝜕𝜀!

+ ∱!"
𝜕𝑁"
𝜕𝜀!

+ ∱!(
𝜕𝑁(
𝜕𝜀!

= 0	 	(3.56) 

 

 

−
𝑟𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + [𝑟(𝜀" − 𝜀!)]𝑁! +

W
𝑟(𝛽
3 + 𝑟((𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)X𝑁" − W

𝑟(𝛽
6
X𝑁0 = 0 (3.51)

 

gives 

𝑟𝑞𝐻"

2𝑑!
𝜀!" − [𝑟]𝑁! − [𝑟" + 2𝛼]𝑁" + ∱"!

𝜕𝑁!
𝜕𝜀!

+ ∱""
𝜕𝑁"
𝜕𝜀!

+ ∱"0
𝜕𝑁0
𝜕𝜀!

= 0 (3.57) 

 

 

−
𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − \

𝛽
6
]𝑁! + \

𝛽
3
+ (𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")]𝑁( +

[𝑟(𝜀( − 𝜀")]𝑁0 − \
𝛽
6
]𝑁A = 0 	(3.52)

 

gives 

∱(!
𝜕𝑁!
𝜕𝜀!

+ ∱((
𝜕𝑁(
𝜕𝜀!

+ ∱(0
𝜕𝑁0
𝜕𝜀!

+ ∱(A
𝜕𝑁A
𝜕𝜀!

= 0 (3.58) 
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−
𝑟𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − W

𝑟(𝛽
6 X𝑁" + [𝑟(𝜀( − 𝜀")]𝑁( +

W
𝑟(𝛽
3
+ 𝑟"(𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")X𝑁0 − W

𝑟(𝛽
6
X𝑁> = 0 (3.53)

 

gives 

∱0"
𝜕𝑁"
𝜕𝜀!

+ ∱0(
𝜕𝑁(
𝜕𝜀!

+ ∱00
𝜕𝑁0
𝜕𝜀!

+ ∱0>
𝜕𝑁>
𝜕𝜀!

= 0 (3.59) 

 

 

−
𝑞𝐻"

6𝑑!
(1 − 𝜀(() − \

𝛽
6
]𝑁( +

\
𝛽
3
+ (1 − 𝜀() + 2𝛼(1 − 𝜀()] 𝑁A + [𝑟(1 − 𝜀()]𝑁> = 0 (3.54)

 

gives 

∱A(
𝜕𝑁(
𝜕𝜀!

+ ∱AA
𝜕𝑁A
𝜕𝜀!

+ ∱A>
𝜕𝑁>
𝜕𝜀!

= 0 (3.60) 

 

 

−
𝑟𝑞𝐻"

6𝑑!
(1 − 𝜀(() − W

𝑟(𝛽
6 X𝑁0 + [𝑟(1 − 𝜀()]𝑁A +

W
𝑟(𝛽
3
+ 𝑟"(1 − 𝜀() + 2𝛼(1 − 𝜀()X𝑁> = 0 	(3.55)

 

gives 

∱>0
𝜕𝑁0
𝜕𝜀!

+ ∱>A
𝜕𝑁A
𝜕𝜀!

+ ∱>>
𝜕𝑁>
𝜕𝜀!

= 0	 (3.61) 
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3.3.2 Derivation of 𝑵𝟏	~	𝑵𝟔 with Respect to 𝜺𝟐 

−
𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + \

𝛽
3
+ (𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)]𝑁! +

[𝑟(𝜀" − 𝜀!)]𝑁" − \
𝛽
6
]𝑁( = 0 (3.50)

 

gives 

−
𝑞𝐻"

2𝑑!
𝜀"" + [1 + 2𝛼]𝑁! + [𝑟]𝑁" + ∱!!

𝜕𝑁!
𝜕𝜀"

+ ∱!"
𝜕𝑁"
𝜕𝜀"

+ ∱!(
𝜕𝑁(
𝜕𝜀"

= 0 (3.62) 

 

 

−
𝑟𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + [𝑟(𝜀" − 𝜀!)]𝑁! +

W
𝑟(𝛽
3 + 𝑟((𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)X𝑁" − W

𝑟(𝛽
6
X𝑁0 = 0 (3.51)

 

gives 

−
𝑟𝑞𝐻"

2𝑑!
𝜀"" + [𝑟]𝑁! + [𝑟" + 2𝛼]𝑁" +

∱"!
𝜕𝑁!
𝜕𝜀"

+ ∱""
𝜕𝑁"
𝜕𝜀"

+ ∱"0
𝜕𝑁0
𝜕𝜀"

= 0 	(3.63)
 

 

 

−
𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − \

𝛽
6
]𝑁! + \

𝛽
3
+ (𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")] 𝑁( +

[𝑟(𝜀( − 𝜀")]𝑁0 − \
𝛽
6
]𝑁A = 0 (3.52)

 

gives 

𝑞𝐻"

2𝑑!
𝜀"" − [1 + 2𝛼]𝑁( − [𝑟]𝑁0 + ∱

(!

𝜕𝑁!
𝜕𝜀"

+

∱((
𝜕𝑁(
𝜕𝜀"

+ ∱(0
𝜕𝑁0
𝜕𝜀"

+ ∱(A
𝜕𝑁A
𝜕𝜀"

= 0 (3.64)
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−
𝑟𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − W

𝑟(𝛽
6 X𝑁" + [𝑟(𝜀( − 𝜀")]𝑁( +

W
𝑟(𝛽
3
+ 𝑟"(𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")X𝑁0 − W

𝑟(𝛽
6
X𝑁> = 0 (3.53)

 

gives 

𝑟𝑞𝐻"

2𝑑!
𝜀"" − [𝑟]𝑁( − [𝑟" + 2𝛼]𝑁0 + ∱

0"

𝜕𝑁"
𝜕𝜀"

+

∱0(
𝜕𝑁(
𝜕𝜀"

+ ∱00
𝜕𝑁0
𝜕𝜀"

+ ∱0>
𝜕𝑁>
𝜕𝜀"

= 0 (3.65)
 

 

 

−
𝑞𝐻"

6𝑑!
(1 − 𝜀(() − \

𝛽
6
]𝑁( +

\
𝛽
3
+ (1 − 𝜀() + 2𝛼(1 − 𝜀()] 𝑁A +	[𝑟(1 − 𝜀()]𝑁> = 0	 (3.54)

 

gives 

∱A(
𝜕𝑁(
𝜕𝜀"

+ ∱AA
𝜕𝑁A
𝜕𝜀"

+ ∱A>
𝜕𝑁>
𝜕𝜀"

= 0 (3.66) 

 

 

−
𝑟𝑞𝐻"

6𝑑!
(1 − 𝜀(() − W

𝑟(𝛽
6 X𝑁0 + [𝑟(1 − 𝜀()]𝑁A +

W
𝑟(𝛽
3
+ 𝑟"(1 − 𝜀() + 2𝛼(1 − 𝜀()X𝑁> = 0 (3.55)

 

gives 

∱>0
𝜕𝑁0
𝜕𝜀"

+ ∱>A
𝜕𝑁A
𝜕𝜀"

+ ∱>>
𝜕𝑁>
𝜕𝜀"

= 0 (3.67) 
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3.3.3 Derivation of 𝑵𝟏	~	𝑵𝟔 with Respect to 𝜺𝟑 

−
𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + \

𝛽
3
+ (𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)]𝑁! +

[𝑟(𝜀" − 𝜀!)]𝑁" − \
𝛽
6
]𝑁( = 0 (3.50)

 

gives 

∱!!
𝜕𝑁!
𝜕𝜀(

+ ∱!"
𝜕𝑁"
𝜕𝜀(

+ ∱!(
𝜕𝑁(
𝜕𝜀(

= 0 (3.68) 

 

 

−
𝑟𝑞𝐻"

6𝑑!
(𝜀"( − 𝜀!() + [𝑟(𝜀" − 𝜀!)]𝑁! +

W
𝑟(𝛽
3 + 𝑟((𝜀" − 𝜀!) + 2𝛼(𝜀" − 𝜀!)X𝑁" − W

𝑟(𝛽
6
X𝑁0 = 0 (3.51)

 

gives 

∱"!
𝜕𝑁!
𝜕𝜀(

+ ∱""
𝜕𝑁"
𝜕𝜀(

+ ∱"0
𝜕𝑁0
𝜕𝜀(

= 0 (3.69) 

 

 

−
𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − \

𝛽
6
]𝑁! + \

𝛽
3
+ (𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")] 𝑁( +

[𝑟(𝜀( − 𝜀")]𝑁0 − \
𝛽
6
]𝑁A = 0 (3.52)

 

gives 

−
𝑞𝐻"

2𝑑!
𝜀(" + [1 + 2𝛼]𝑁( + [𝑟]𝑁0 + ∱

(!

𝜕𝑁!
𝜕𝜀(

+

∱((
𝜕𝑁(
𝜕𝜀(

+ ∱(0
𝜕𝑁0
𝜕𝜀(

+ ∱(A
𝜕𝑁A
𝜕𝜀(

= 0 	(3.70)
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−
𝑟𝑞𝐻"

6𝑑!
(𝜀(( − 𝜀"() − W

𝑟(𝛽
6 X𝑁" + [𝑟(𝜀( − 𝜀")]𝑁( +

W
𝑟(𝛽
3
+ 𝑟"(𝜀( − 𝜀") + 2𝛼(𝜀( − 𝜀")X𝑁0 − W

𝑟(𝛽
6
X𝑁> = 0 (3.53)

 

gives 

−
𝑟𝑞𝐻"

2𝑑!
𝜀(" + [𝑟]𝑁( + [𝑟" + 2𝛼]𝑁0 + ∱

0"

𝜕𝑁"
𝜕𝜀(

+

∱0(
𝜕𝑁(
𝜕𝜀(

+ ∱00
𝜕𝑁0
𝜕𝜀(

+ ∱0>
𝜕𝑁>
𝜕𝜀(

= 0 (3.71)
 

 

 

−
𝑞𝐻"

6𝑑!
(1 − 𝜀(() − \

𝛽
6
]𝑁( +

\
𝛽
3
+ (1 − 𝜀() + 2𝛼(1 − 𝜀()] 𝑁A + [𝑟(1 − 𝜀()]𝑁> = 0 (3.54)

 

gives 

𝑞𝐻"

2𝑑!
𝜀(" − [1 + 2𝛼]𝑁A − [𝑟]𝑁> + ∱

A(

𝜕𝑁(
𝜕𝜀(

+ ∱AA
𝜕𝑁A
𝜕𝜀(

+ ∱A>
𝜕𝑁>
𝜕𝜀(

= 0	 (3.72) 

 

 

−
𝑟𝑞𝐻"

6𝑑!
(1 − 𝜀(() − W

𝑟(𝛽
6 X𝑁0 + [𝑟(1 − 𝜀()]𝑁A +

W
𝑟(𝛽
3
+ 𝑟"(1 − 𝜀() + 2𝛼(1 − 𝜀()X𝑁> = 0 (3.55)

 

gives 

𝑟𝑞𝐻"

2𝑑!
𝜀(" − [𝑟]𝑁A − [𝑟" + 2𝛼]𝑁> + ∱

>0

𝜕𝑁0
𝜕𝜀(

+ ∱>A
𝜕𝑁A
𝜕𝜀(

+ ∱>>
𝜕𝑁>
𝜕𝜀(

= 0 (3.73) 

 

 

 

 



 

 
50 

3.3.4 Derivative of ∆𝟎 with Respect to 𝒙𝟏, 𝒙𝟐	𝒂𝒏𝒅	𝒙𝟑, Respectively 

From the above 3 parts, the derivatives of 𝑁!,	𝑁",	𝑁(,	𝑁0,	𝑁A and 𝑁> with respect to 𝜀!,	𝜀" 

and 𝜀(, respectively, are expressed as follow in matrix form. 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝜕𝑁!
𝜕𝜀!
𝜕𝑁"
𝜕𝜀!
𝜕𝑁(
𝜕𝜀!
𝜕𝑁0
𝜕𝜀!
𝜕𝑁A
𝜕𝜀!
𝜕𝑁>
𝜕𝜀!⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

= �∱ �3!

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ −

𝑞𝐻"

2𝑑!
𝜀!" + [1 + 2𝛼]𝑁! + [𝑟]𝑁"

−
𝑟𝑞𝐻"

2𝑑!
𝜀!" + [𝑟]𝑁! + [𝑟" + 2𝛼]𝑁"

0
0
0
0 ⎭

⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

	(3.74) 

 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝜕𝑁!
𝜕𝜀"
𝜕𝑁"
𝜕𝜀"
𝜕𝑁(
𝜕𝜀"
𝜕𝑁0
𝜕𝜀"
𝜕𝑁A
𝜕𝜀"
𝜕𝑁>
𝜕𝜀"⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

= �∱ �3!

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑞𝐻"

2𝑑!
𝜀"" − [1 + 2𝛼]𝑁! − [𝑟]𝑁"

𝑟𝑞𝐻"

2𝑑!
𝜀"" − [𝑟]𝑁! − [𝑟" + 2𝛼]𝑁"

−
𝑞𝐻"

2𝑑!
𝜀"" + [1 + 2𝛼]𝑁( + [𝑟]𝑁0

−
𝑟𝑞𝐻"

2𝑑!
𝜀"" + [𝑟]𝑁( + [𝑟" + 2𝛼]𝑁0

0
0 ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

(3.75) 
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⎩
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⎪
⎪
⎧
𝜕𝑁!
𝜕𝜀(
𝜕𝑁"
𝜕𝜀(
𝜕𝑁(
𝜕𝜀(
𝜕𝑁0
𝜕𝜀(
𝜕𝑁A
𝜕𝜀(
𝜕𝑁>
𝜕𝜀(⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

= �∱ �3!

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0
0

𝑞𝐻"

2𝑑!
𝜀(" − [1 + 2𝛼]𝑁( − [𝑟]𝑁0

𝑟𝑞𝐻"

2𝑑!
𝜀(" − [𝑟]𝑁( − [𝑟" + 2𝛼]𝑁0

−
𝑞𝐻"

2𝑑!
𝜀(" + [1 + 2𝛼]𝑁A + [𝑟]𝑁>

−
𝑟𝑞𝐻"

2𝑑!
𝜀(" + [𝑟]𝑁A + [𝑟" + 2𝛼]𝑁>⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

(3.76) 

 

Introducing the flexural rigidity ratio into equations (3.47) – (3.49), the optimum 

locations of the outriggers can be got from the following equation. 

 

𝜕∆/
𝜕𝑥!

= −
𝑑!
2𝐸𝐼

\(𝑥"" − 𝑥!")
𝜕𝑁!
𝜕𝑥!

− 2𝑥!𝑁! + (𝑥(" − 𝑥"")
𝜕𝑁(
𝜕𝑥!

+ (𝐻" − 𝑥(")
𝜕𝑁A
𝜕𝑥!

] −

𝑑"
2𝐸𝐼 \

(𝑥"" − 𝑥!")
𝜕𝑁"
𝜕𝑥!

− 2𝑥!𝑁" + (𝑥(" − 𝑥"")
𝜕𝑁0
𝜕𝑥!

+ (𝐻" − 𝑥(")
𝜕𝑁>
𝜕𝑥!

] = 0 (3.47)
 

which becomes 

\(𝜀"" − 𝜀!")
𝜕𝑁!
𝜕𝜀!

− 2𝜀!𝑁! + (𝜀(" − 𝜀"")
𝜕𝑁(
𝜕𝜀

+ (𝐻" − 𝜀(")
𝜕𝑁A
𝜕𝜀!

] +

𝑟 \(𝜀"" − 𝜀!")
𝜕𝑁"
𝜕𝜀!

− 2𝜀!𝑁" + (𝜀(" − 𝜀"")
𝜕𝑁0
𝜕𝜀!

+ (𝐻" − 𝜀(")
𝜕𝑁>
𝜕𝜀!

] = 0 (3.77)
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𝜕∆/
𝜕𝑥"

= −
𝑑!
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁!
𝜕𝑥"

+ 2𝑥"𝑁! +																																																																								

(𝑥(" − 𝑥"")
𝜕𝑁(
𝜕𝑥"

− 2𝑥"𝑁( + (𝐻" − 𝑥(")
𝜕𝑁A
𝜕𝑥"

] −

𝑑"
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁"
𝜕𝑥"

+ 2𝑥"𝑁" + (𝑥(" − 𝑥"")
𝜕𝑁0
𝜕𝑥"

−

2𝑥"𝑁0 + (𝐻" − 𝑥(")
𝜕𝑁>
𝜕𝑥"

] = 0 (3.48)

 

which becomes 

\(𝜀"" − 𝜀!")
𝜕𝑁!
𝜕𝜀"

+ 2𝜀"𝑁! + (𝜀(" − 𝜀"")
𝜕𝑁(
𝜕𝜀"

− 2𝜀"𝑁( + (1 − 𝜀(")
𝜕𝑁A
𝜕𝜀"

] +

𝑟 \(𝜀"" − 𝜀!")
𝜕𝑁"
𝜕𝜀"

+ 2𝜀"𝑁" + (𝜀(" − 𝜀"")
𝜕𝑁0
𝜕𝜀"

− 2𝜀"𝑁0 + (1 − 𝜀(")
𝜕𝑁>
𝜕𝜀"

] = 0 	(3.78)
 

 

 

𝜕∆/
𝜕𝑥(

= −
𝑑!
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁!
𝜕𝑥(

+ (𝑥(" − 𝑥"")
𝜕𝑁(
𝜕𝑥(

+																																																						

2𝑥"𝑁( + (𝐻" − 𝑥(")
𝜕𝑁A
𝜕𝑥(

− 2𝑥(𝑁A] −

𝑑"
2𝐸𝐼 [

(𝑥"" − 𝑥!")
𝜕𝑁"
𝜕𝑥(

+ (𝑥(" − 𝑥"")
𝜕𝑁0
𝜕𝑥(

+ 2𝑥(𝑁0 +

(𝐻" − 𝑥(")
𝜕𝑁>
𝜕𝑥(

− 2𝑥!𝑁>] = 0 (3.49)

 

which becomes 

\(𝜀"" − 𝜀!")
𝜕𝑁!
𝜕𝜀(

+ (𝜀(" − 𝜀"")
𝜕𝑁(
𝜕𝜀(

+ 2𝜀"𝑁( + (1 − 𝜀(")
𝜕𝑁A
𝜕𝜀(

− 2𝜀(𝑁A] +

𝑟 \(𝜀"" − 𝜀")
𝜕𝑁"
𝜕𝜀(

+ (𝜀(" − 𝜀"")
𝜕𝑁0
𝜕𝜀(

+ 2𝜀(𝑁0 + (1 − 𝜀(")
𝜕𝑁>
𝜕𝜀(

− 2𝜀!𝑁>] = 0 	(3.79)
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3.4 Solution Procedure for the Optimum Locations of Outriggers of Unsymmetrical 

Structure 

In order to obtain the numerical results of 𝜀!, 𝜀" and 𝜀( from equations (3.76), 

(3.77) and (3.78), computer program coded in Matlab is adopted. The solution procedure 

is as follows. 

I. Set the initial value for r; 

II. Calculate {𝑁} values from the equation {𝑁} = �∱ �3!{∆}, or equations (3.35) – 

(3.41) 

III. Calculate �6R
6S"
�	values from the equation �6R

6S"
� 	= 	 �∱ �3! � 6∆

6S"
�	 or equations (3.56) 

– (3.61) and (3.74) 

IV. Calculate �6R
6S!
�	values from the equation �6R

6S!
� 	= 	 �∱ �3! � 6∆

6S!
�	 or equations (3.62) 

– (3.67) and (3.75) 

V. Calculate �6R
6S'
�	values from the equation �6R

6S'
� 	= 	 �∱ �3! � 6∆

6S'
�	 or equations (3.68) 

– (3.73) and (3.76) 

VI. Use Newton’s method to solves the equation 6∆#
6S"

	 = 	0, 6∆#
6S!

= 	0, 6∆#
6S'

= 	0	 

equations (3.77) – (3.79) in order to get the values of 𝜀!, 𝜀" and 𝜀( with different r 

values, respectively. 

The codes of the computer program for optimum outrigger locations are validated 

when r = 0.9999 ≈ 1. It’s because the results of the program for analyzing the 𝜀 in three-

stories unsymmetrical outrigger-braced structure all equal to the results of three-stories 

symmetrical outrigger-braced structure as shown in Fig. 2.8 which is adapted from Smith 

and Coull (1911).  
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Figure 2.8 Optimum outrigger locations for three-outrigger structure 
 
 

 

Figure 3.13 Optimum location of three-stories unsymmetrical outrigger-braced structure  

(r = 0.9999 ≈ 1) 
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Comparing to Fig.2.8 and Fig.3.8, they are almost the same. Therefore, the codes of 

computer program are verified, and it is used for the analysis in the following. In addition, 

the derived equations for unsymmetrical structure can be reduced to those of symmetrical 

structure when r = 1. 
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CHAPTER 4 NUMERICAL ANALYSIS  

4.1 Introduction 

The optimum locations can be obtained  for given r and ω. In this chapter, the numerical 

analysis, results comparisons and discussions are presented in the following. 

 

4.2 Comparing with Different Values of r 

 

Figure 4.1 Optimum outrigger locations of three-stories unsymmetrical outrigger-braced structure 
comparing for r being 0.9999 and 0.8, respectively 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Va
lu

e 
of

 𝑥
𝑖/
𝐻

(𝜀
i)

Value of 𝜔

𝜀1 r=0.9999
𝜀2 r=0.9999
𝜀3 r=0.9999
𝜀1 r=0.8
𝜀2 r=0.8
𝜀3 r=0.8



 

 
57 

 

Figure 4.2 Optimum outrigger locations of three-stories unsymmetrical outrigger-braced structure 
comparing for r being 0.9999 and 0.6, respectively 

 

 

Figure 4.3 Optimum outrigger locations of three-stories unsymmetrical outrigger-braced structure 
comparing for r being 0.9999 and 0.4, respectively 
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4.2.1 Summary of Comparing with Different Values of r 

The aims is to compare the results with different values of r. 

1. For given value of r=0.9999,  the values of 𝜀1, 𝜀2 and 𝜀3 are similar or smaller than 

those when r=0.8 and r=0.6 as shown in Fig.4.1 and Fig.4.2. 

2. For given value of r-0.4, the values of 𝜀1, 𝜀2 and 𝜀3 are smaller than those when r=0.4 

at some points as shown in Fig.4.3. 
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4.3 Numerical Results for Different Values of r 

 

Figure 4.4 Optimum outrigger locations of the third story in three-stories unsymmetrical outrigger-braced 
structure for different values of r shown in 𝜔	𝑣𝑠	𝜀1 
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Figure 4.6 Optimum outrigger locations of the second story in three-stories unsymmetrical outrigger-braced 
structure for different values of r shown in 𝜔	𝑣𝑠	𝜀2 
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Figure 4.8 Optimum outrigger locations of the first story in three-stories unsymmetrical outrigger-braced 
structure for different values of r shown in 𝜔	𝑣𝑠	𝜀3 

 

 

Figure 4.9 Amplification of Fig 4.8 
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4.3.1 Summary of Numerical Results for Different Values of r 

The aim of this part is to compare the numerical results for different values of r. 

1. For given values of r=0.9999, r=0.8, and r=0.7, 𝜀1, 𝜀2 and 𝜀3 decrease as 𝛚 increases. 

Furthermore, for given values of r=0.6, r=0.5 and r=0.4, 𝜀1, 𝜀2 and 𝜀3 have critical 

values and the results are shown in Fig.4.4, Fig.4.6 and Fig.4.8.   

2. Fig.4.5 shows that 𝜀1 increases as r decreases for r=0.9999, r=0.8 and r=0.7. On the 

other hand,  𝜀1 increases as r increases for r=0.7, r=0.6, r=0.5 and r=0.4 at some 

points. In addition, it shows that the 𝜀1 at r=0.7 and r=0.6 makes the first crossing 

point. The performance is same for the result of 𝜀2 as shown in Fig.4.7. 

3. Fig.4.9 shows that 𝜀3 increases as r decreases for r=0.9999, r=0.8, r=0.7 and r=0.6. 

On the other hand, 𝜀1 increases as r increases for r=0.6, r=0.5 and r=0.4 at some 

points. In addition, it shows that the 𝜀3 at r=0.6 and r=0.5 makes the first crossing 

point. 

4. According to I, II and III, the stability increases with the value of r increases.  
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4.4 Numerical Results for Different Values of 𝛽 

The value of 𝜔 influenced by the value of 𝛽, the comparisons of different results of r are 

shown in the following.  

 

Figure 4.10 Optimum outrigger locations of the third story in three-stories unsymmetrical outrigger-braced 
structure for different values of 𝛽 shown in 𝜔	𝑣𝑠	𝜀1 when r=0.7 
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Figure 4.12 Optimum outrigger locations of the second story in three-stories unsymmetrical outrigger-
braced structure for different values of 𝛽 shown in 𝜔	𝑣𝑠	𝜀1 when r=0.7 
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Figure 4.14 Optimum outrigger locations of the first story in three-stories unsymmetrical outrigger-braced 

structure for different values of 𝛽 shown in 𝜔	𝑣𝑠	𝜀1 when r=0.7 
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Figure 4.16 Optimum outrigger locations of the third story in three-stories unsymmetrical outrigger-braced 
structure for different values of 𝛽 shown in 𝜔	𝑣𝑠	𝜀1 when r=0.5 

 
 

 

Figure 4.17 Amplification of Fig 4.16 
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Figure 4.18 Optimum outrigger locations of the second story in three-stories unsymmetrical outrigger-

braced structure for different values of 𝛽 shown in 𝜔	𝑣𝑠	𝜀1 when r=0.5 
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Figure 4.20 Optimum outrigger locations of the first story in three-stories unsymmetrical outrigger-braced 

structure for different values of 𝛽 shown in 𝜔	𝑣𝑠	𝜀1 when r=0.5 
 
 

 

Figure 4.21 Amplification of Fig 4.20 
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4.4.1 Summary of Numerical Results for Different Values of 𝛽 

The aim of this part is to compare the numerical results for different values of 𝛽 

1. When r=0.7, for given values of 𝛽=18, 𝛽=16, 𝛽=14 and 𝛽=12, 𝜀1, 𝜀2 and 𝜀3 decrease 

while 𝛚 increases. The results are shown in Fig.4.10, Fig.4.12 and Fig.4.14. On the 

other hand, when r=0.5, for given values of 𝛽=18 and 𝛽=16, 𝜀1, 𝜀2 and 𝜀3 decrease 

while 𝛚 increases. Furthermore, for given values of 𝛽=14 and 𝛽=12, 𝜀1, 𝜀2 and 𝜀3 

have critical points and the results are shown in Fig.4.16, Fig.4.18 and Fig.4.20.   

2. For r=0.7, the results of 𝜀1, 𝜀2 and 𝜀3 are very similar for different values of 𝛽. They 

are presented in Fig.4.11, Fig.4.13 and Fig.4.15.   

3. For r=0.5, the results of 𝜀1, 𝜀2 and 𝜀3 are also similar for different values of 𝛽. There 

are some crossing points and they are presented in Fig.4.17, Fig.4.19 and Fig.4.21. 
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4.5 Numerical Results for Different Values of 𝛼 

The value of 𝜔 is influenced by the value of 𝛼. The comparisons of the results with 

different values of r are shown in the following.  

 

Figure 4.0.22 Optimum outrigger locations of the third story in three-stories unsymmetrical outrigger-
braced structure for different values of 𝛼 shown in ω	vs	ε1 when r=0.7 

 
 

 

Figure 4.23 Amplification of Fig 4.22 
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Figure 4.24 Optimum outrigger locations of the second story in three-stories unsymmetrical outrigger-
braced structure for different values of 𝛼 shown in ω	vs	ε1 when r=0.7 

 
 

 

Figure 4.25 Amplification of Fig 4.24 
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Figure 4.26 Optimum outrigger locations of the first story in three-stories unsymmetrical outrigger-braced 

structure for different values of 𝛼 shown in ω	vs	ε1 when r=0.7 
 
 

 

Figure 4.27 Amplification of Fig 4.26 
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Figure 4.28 Optimum outrigger locations of the third story in three-stories unsymmetrical outrigger-braced 

structure for different values of 𝛼 shown in ω	vs	ε1 when r=0.5 
 
 

 

Figure 4.29 Amplification of Fig 4.28 
 

 

0

0.05

0.1

0.15

0.2

0.25

0.3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Va
lu

e 
of

 𝑥
1/
𝐻

(𝜀
1)

Value of 𝜔

𝛼=0.3
𝛼=0.5
𝛼=0.7
𝛼=0.9

0.12

0.13

0.14

0.15

0.16

0.17
0.7 0.8 0.9 1

Va
lu

e 
of

 𝑥
1/
𝐻

(𝜀
1)

Value of 𝜔

𝛼=0.3
𝛼=0.5
𝛼=0.7
𝛼=0.9



 

 
74 

 

Figure 4.30 Optimum outrigger locations of the second story in three-stories unsymmetrical outrigger-
braced structure for different values of 𝛼 shown in ω	vs	ε1 when r=0.5 

 
 

 

Figure 4.31 Amplification of Fig 4.30 
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Figure 4.32 Optimum outrigger locations of the first story in three-stories unsymmetrical outrigger-braced 

structure for different values of 𝛼 shown in ω	vs	ε1 when r=0.5 
 
 

 

Figure 4.33 Amplification of Fig 4.32 
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4.5.1 Summary of Numerical Results for Different Values of 𝛼 

The aim of this part is to compare the numerical results for different values of 𝛼. 

1. When r=0.7 and r=0.5, for given values of 𝛼=0.9, 𝛼=0.7, 𝛼=0.5 and 𝛼=0.3,  𝜀1, 𝜀2 

and 𝜀3 decrease as 𝛚 increases. The results are shown in Fig.4.22, Fig.4.24, Fig.4.26, 

Fig.4.28, Fig.4.30 and Fig.4.32. 

2. For r=0.7 and r=0.5, the results of  𝜀1, 𝜀2 and 𝜀3 are very similar for different values 

of 𝛼. They are presented in Fig.4.23, Fig.4.25, Fig.4.27, Fig.4.29, Fig.4.31 and 

Fig.4.33. 

3. According to I and II, the results are not much influenced by 𝛼. 
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CHAPTER 5 Conclusions and Final Remarks 

5.1 Summary 

This project aims to get the relationship between the optimum locations and the 

mechanical properties of the unsymmetrical three-stories outrigger-braced structure. Also, 

this is a topic that was not studied in the past. 

There are the following three steps in the analysis.: 

1. The governing equations about the compatibility of columns’ axial deformation are 

derived based on the idea proposed by Er and Iu (2009), which is the improved 

version of that proposed by Smith and Coull (1991) for the symmetrical outrigger-

braced structures. 

2. Formulate the governing equations for the optimum locations of the unsymmetrical 

three-stories outrigger-braced structure. Computer program is developed for solving 

the nonlinear algebraic equations and parameter analysis. 

3. Test the computer program by comparing the result obtained by the computer 

program with those obtained by Smith and Coull (1991). 

4. Conduct parameter analysis. 

5. Give conclusions and design guidelines through numerical analysis. 

 

5.2 Conclusions 

The main conclusions of this project are: 

1. The governing equations for analyzing the optimum locations of the outriggers of 

unsymmetrical three-stories outriggers braced structures have been formulated based 

on the compatibility of the columns’ axial deformation. 
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2. The governing equations for analyzing the optimum locations of the outriggers of 

unsymmetrical three-stories outriggers braced structures have been formulated based 

on the compatibility of the columns’ axial deformation. 

3. The procedure of solving the nonlinear equations in using Matlab and plot figures 

has been developed. 

4. The optimum locations of outrigger have been obtained under different conditions. 

5. For various values of r, ε1 (x1/H) increases as r increases when r is less or equal to 

0.6. When r is greater than 0.6, ε1 decreases at some point even though r increases. 

The behavior of ε2 (x2/H) is similar. ε3 (x3/H), decreases at some point as r increases. 

6. As β increases,ε1, ε2 and ε3 decreases. However, ε decreases suddenly after ω equals 

to 0.9 or 0.8 as β decreases. Meanwhile, ε decreases as ω increases for given value of 

β normally. 

7. ε1, ε2 and ε3 decreases as α increases. In addition, ε decreases as ω increases for given 

value of α. Compared to r or β, α has less influence on  the optimum outrigger 

locations of the structure. 

 
5.3 Further Research 

In this research, only the three-stories unsymmetrical outrigger-braced structure is 

analyzed, and also the limited parameter analyses were conducted. Therefore, the 

following researches related to the outrigger-braced structure can be considered in the 

future. 

1. Analysis of the structure with more layers of outriggers; 

2. Analysis of 3D outrigger-braced structures; 

3. Analysis of the unsymmetrical structure under different type of distributed loads 

over the height of the structure. 
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APPENDIX A. DETALIS OF NUMERICAL RESULTS 

Table 1 Details of Numerical Results for Different Values of r 
r = 0.9999            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.21999 0.20269 0.18905 0.17787 0.16842 0.16027 0.15313 0.14679 0.14109 0.13594 
𝜀2 0.53361 0.48052 0.44684 0.42128 0.40044 0.38276 0.36738 0.35376 0.34153 0.33045 0.32033 
𝜀3  0.77844 0.69265 0.64217 0.60501 0.57525 0.55030 0.52876 0.50980 0.49285 0.47753 0.46356 

            

r = 0.8            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝜀1 0.24303 0.22314 0.20734 0.19456 0.18391 0.17484 0.16697 0.16002 0.15375 0.14784 0.14169 
𝜀2 0.53363 0.48730 0.45613 0.43205 0.41222 0.39528 0.38046 0.36724 0.35516 0.34364 0.33163 
𝜀3  0.77846 0.70455 0.65838 0.62340 0.59481 0.57045 0.54912 0.53006 0.51261 0.49607 0.47916 

            

r = 0.7            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22318 0.20717 0.19433 0.18380 0.17507 0.16780 0.16174 0.15658 0.15172 0.14539 
𝜀2 0.53363 0.48763 0.45625 0.43216 0.41266 0.39643 0.38276 0.37114 0.36102 0.35131 0.33882 
𝜀3  0.77847 0.70640 0.66126 0.62718 0.59949 0.57614 0.55603 0.53843 0.52266 0.50742 0.48911 

            

r = 0.6            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22259 0.20584 0.19233 0.18134 0.17247 0.16555 0.16054 0.15737 0.15527 0.14986 
𝜀2 0.53363 0.48654 0.45394 0.42884 0.40871 0.39248 0.37965 0.37006 0.36349 0.35857 0.34748 
𝜀3  0.77846 0.70577 0.66046 0.62649 0.59925 0.57675 0.55807 0.54276 0.53041 0.51941 0.50109 

            

r = 0.5            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22173 0.20403 0.18949 0.17742 0.16754 0.15993 0.15505 0.15378 0.15666 0.15541 
𝜀2 0.53363 0.48470 0.45039 0.42347 0.40153 0.38375 0.37011 0.36127 0.35851 0.36239 0.35812 
𝜀3  0.77846 0.70324 0.65652 0.62160 0.59381 0.57127 0.55331 0.54004 0.53216 0.52955 0.51587 

            

r = 0.4            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝜀1 0.24302 0.22083 0.20235 0.18687 0.17361 0.16223 0.15276 0.14591 0.14383 0.15167 0.16248 
𝜀2 0.53362 0.48269 0.44683 0.41804 0.39376 0.37314 0.35633 0.34469 0.34182 0.35554 0.37157 
𝜀3  0.77845 0.69962 0.65056 0.61364 0.58406 0.56003 0.54112 0.52801 0.52311 0.53165 0.53461 
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Table 2 Details of Numerical Results for Different Values of 𝛽 when r Equals to 0.5 
𝛽=14            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22184 0.20440 0.19015 0.17831 0.16848 0.16048 0.15437 0.15039 0.14892 0.15011 
𝜀2 0.53363 0.48492 0.45106 0.42462 0.40303 0.38523 0.37081 0.35977 0.35243 0.34929 0.35045 
𝜀3  0.77846 0.70353 0.65726 0.62279 0.59527 0.57267 0.55401 0.53892 0.52738 0.51962 0.51542 

            

𝛽=16            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22192 0.20467 0.19063 0.17899 0.16924 0.16114 0.15459 0.14961 0.14632 0.14484 
𝜀2 0.53363 0.48509 0.45155 0.42547 0.40417 0.38648 0.37182 0.35995 0.35085 0.34463 0.34146 
𝜀3  0.77846 0.70374 0.65782 0.62368 0.59642 0.57390 0.55503 0.53925 0.52631 0.51612 0.50870 

            

𝛽=18            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22199 0.20488 0.19101 0.17951 0.16986 0.16175 0.15502 0.14960 0.14549 0.14271 
𝜀2 0.53363 0.48522 0.45193 0.42612 0.40507 0.38751 0.37279 0.36057 0.35066 0.34303 0.33767 
𝜀3  0.77846 0.70390 0.65825 0.62438 0.59734 0.57493 0.55602 0.53996 0.52638 0.51509 0.50598 

 
 
 
Table 3 Details of Numerical Results for Different Values of 𝛽 when r Equals to 0.7 

𝛽=14            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22325 0.20738 0.19467 0.18421 0.17547 0.16807 0.16175 0.15631 0.15151 0.14701 
𝜀2 0.53363 0.48777 0.45663 0.43276 0.41339 0.39716 0.38330 0.37131 0.36080 0.35135 0.34234 
𝜀3  0.77847 0.70658 0.66175 0.62796 0.60052 0.57733 0.55725 0.53957 0.52376 0.50929 0.49542 

            

𝛽=16            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22330 0.20754 0.19492 0.18454 0.17581 0.16837 0.16195 0.15636 0.15142 0.14696 
𝜀2 0.53363 0.48788 0.45691 0.43322 0.41397 0.39778 0.38388 0.37174 0.36102 0.35141 0.34258 
𝜀3  0.77847 0.70672 0.66211 0.62855 0.60133 0.57830 0.55832 0.54066 0.52484 0.51045 0.49710 

            

𝛽=18            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24303 0.22335 0.20766 0.19512 0.18480 0.17610 0.16865 0.16219 0.15652 0.15150 0.14697 
𝜀2 0.53363 0.48796 0.45714 0.43358 0.41443 0.39831 0.38441 0.37223 0.36141 0.35168 0.34280 
𝜀3  0.77847 0.70682 0.66239 0.62902 0.60196 0.57908 0.55921 0.54163 0.52585 0.51150 0.49828 
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Table 4 Details of Numerical Results for Different Values of 𝛼when r Equals to 0.5 
𝛼=0.3            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.21398 0.19567 0.18333 0.17427 0.16722 0.16149 0.15666 0.15250 0.14883 0.14555 
𝜀2 0.53360 0.47086 0.43660 0.41395 0.39729 0.38420 0.37344 0.36427 0.35627 0.34914 0.34270 
𝜀3  0.77842 0.68968 0.64483 0.61425 0.59096 0.57211 0.55624 0.54250 0.53038 0.51950 0.50962 
            

𝛼=0.5            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.21560 0.19704 0.18394 0.17407 0.16630 0.15996 0.15465 0.15012 0.14618 0.14271 
𝜀2 0.53361 0.47341 0.43846 0.41443 0.39640 0.38213 0.37039 0.36048 0.35191 0.34438 0.33767 
𝜀3  0.77842 0.69120 0.64538 0.61375 0.58956 0.56998 0.55355 0.53941 0.52700 0.51595 0.50598 
            

𝛼=0.7            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝜀1 0.24302 0.21671 0.19829 0.18497 0.17477 0.16665 0.15997 0.15437 0.14958 0.14542 0.14176 
𝜀2 0.53361 0.47530 0.44044 0.41595 0.39731 0.38243 0.37015 0.35974 0.35076 0.34289 0.33589 
𝜀3  0.77843 0.69278 0.64675 0.61471 0.59009 0.57012 0.55335 0.53892 0.52627 0.51502 0.50490 
            

𝛼=0.9            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.21750 0.19929 0.18591 0.17556 0.16724 0.16037 0.15459 0.14962 0.14531 0.14151 
𝜀2 0.53361 0.47672 0.44208 0.41743 0.39850 0.38328 0.37066 0.35994 0.35068 0.34256 0.33534 
𝜀3  0.77843 0.69411 0.64812 0.61589 0.59104 0.57084 0.55386 0.53924 0.52642 0.51503 0.50478 
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Table 5 Details of Numerical Results for Different Values of 𝛼when r Equals to 0.7 

𝛼=0.3            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.21935 0.20379 0.19221 0.18285 0.17493 0.16804 0.16195 0.15647 0.15151 0.14697 
𝜀2 0.53361 0.48072 0.45035 0.42841 0.41081 0.39592 0.38293 0.37136 0.36091 0.35135 0.34255 
𝜀3  0.77844 0.69838 0.65363 0.62113 0.59519 0.57342 0.55457 0.53790 0.52292 0.50931 0.49683 
            

𝛼=0.5            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.21990 0.20398 0.19212 0.18260 0.17463 0.16776 0.16171 0.15630 0.15142 0.14697 
𝜀2 0.53362 0.48158 0.45065 0.42828 0.41047 0.39554 0.38260 0.37113 0.36082 0.35143 0.34280 
𝜀3  0.77844 0.69920 0.65424 0.62163 0.59569 0.57399 0.55527 0.53877 0.52398 0.51056 0.49828 
            

𝛼=0.7            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.22039 0.20439 0.19239 0.18277 0.17473 0.16783 0.16177 0.15638 0.15152 0.14710 
𝜀2 0.53362 0.48242 0.45133 0.42875 0.41080 0.39579 0.38282 0.37136 0.36108 0.35174 0.34318 
𝜀3  0.77845 0.70007 0.65514 0.62249 0.59654 0.57486 0.55618 0.53973 0.52501 0.51168 0.49949 
            

𝛼=0.9            

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
𝜀1 0.24302 0.22077 0.20479 0.19272 0.18303 0.17495 0.16802 0.16195 0.15655 0.15169 0.14727 
𝜀2 0.53362 0.48310 0.45201 0.42933 0.41128 0.39621 0.38320 0.37174 0.36146 0.35214 0.34361 
𝜀3  0.77845 0.70083 0.65599 0.62335 0.59740 0.57573 0.55707 0.54064 0.52596 0.51267 0.50052 
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APPENDIX B. COMPUTER PROGRAM 

%set the initial value of parameters 
syms q h d1 d2 e1 e2 e3 r alp beta omi  
q=1 
d1=1 
h=1 
omi=0:10:1 
alp=0.3 
beta=omi*12*(1+alp) 
r=0.9999 
 
%matric {P} 
p1=q*h^2*(e2^3-e1^3)/(6*d1) 
p2=q*h^2*r*(e2^3-e1^3)/(6*d1) 
p3=q*h^2*(e3^3-e2^3)/(6*d1) 
p4=q*h^2*r*(e3^3-e2^3)/(6*d1) 
p5=q*h^2*(1-e3^3)/(6*d1) 
p6=q*h^2*r*(1-e3^3)/(6*d1) 
P=[p1;p2;p3;p4;p5;p6] 
 
%matric {delta} 
d11=(e2-e1)+beta/3+2*alp*(e2-e1) 
d12=r*(e2-e1) 
d13=-beta/6 
d14=0 
d15=0 
d16=0 
 
d21=d12 
d22=r^2*(e2-e1)+r^3*beta/3+2*alp*(e2-e1) 
d23=0 
d24=-beta*r^3/6 
d25=0 
d26=0 
 
d31=d13 
d32=d23 
d33=(e3-e2)+beta/3+2*alp*(e3-e2) 
d34=r*(e3-e2) 
d35=-beta/6 
d36=0 
 
d41=d14 
d42=d24 
d43=d34 
d44=r^2*(e3-e2)+r^3*beta/3+2*alp*(e3-e2) 
d45=0 
d46=-beta*r^3/6 
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d51=d15 
d52=d25 
d53=d35 
d54=d45 
d55=(1-e3)+beta/6+2*alp*(1-e3) 
d56=r*(1-e3) 
 
d61=d16 
d62=d26 
d63=d36 
d64=d46 
d65=d56 
d66=r^2*(1-e3)+r^3*beta/6+2*alp*(1-e3) 
D=[d11 d12 d13 d14 d15 d16;d21 d22 d23 d24 d25 d26;d31 d32 d33 d34 d35 d36;d41 
d42 d43 d44 d45 d46;d51 d52 d53 d54 d55 d56;d61 d62 d63 d64 d65 d66] 
 
%matric {N} 
N=D\P 
 
%Take derivatives with respect to e1 on equation {delta}*{N}={P} 
dp11=-q*h^2*e1^2/(2*d1)-(-1-2*alp)*N(1)-(-r)*N(2) 
dp12=-r*q*h^2*e1^2/(2*d1)-(-r)*N(1)-(-r^2-2*alp)*N(2) 
dp13=0 
dp14=0 
dp15=0 
dp16=0 
 
%Take derivatives with respect to e2 on equation {delta}*{N}={P} 
dp21=q*h^2*e2^2/(2*d1)-(1+2*alp)*N(1)-(r)*N(2) 
dp22=r*q*h^2*e2^2/(2*d1)-(r)*N(1)-(r^2+2*alp)*N(2) 
dp23=-q*h^2*e2^2/(2*d1)-(-1-2*alp)*N(3)-(-r)*N(4) 
dp24=-r*q*h^2*e2^2/(2*d1)-(-r)*N(3)-(-r^2-2*alp)*N(4) 
dp25=0 
dp26=0 
 
%Take derivatives with respect to e3 on equation {delta}*{N}={P} 
dp31=0 
dp32=0 
dp33=q*h^2*e3^2/(2*d1)-(1+2*alp)*N(3)-(r)*N(4) 
dp34=r*q*h^2*e3^2/(2*d1)-(r)*N(3)-(r^2+2*alp)*N(4) 
dp35=-q*h^2*e3^2/(2*d1)-(-1-2*alp)*N(5)-(-r)*N(6) 
dp36=-r*q*h^2*e3^2/(2*d1)-(-r)*N(5)-(-r^2-2*alp)*N(6) 
 
%matric of derivatives with respect to e1, e2 and e3 on equation {delta}*{N}={P} 
Dp1=[dp11;dp12;dp13;dp14;dp15;dp16] 
Dp2=[dp21;dp22;dp23;dp24;dp25;dp26] 
Dp3=[dp31;dp32;dp33;dp34;dp35;dp36] 
 
% derivatives of N with respect to e1, e2 and e3 
Nd1=D\Dp1 
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Nd2=D\Dp2 
Nd3=D\Dp3 
 
%final equations to get the optimum locations 
E1=(N(1)*(-2*e1)+Nd1(1)*(e2^2-e1^2)+Nd1(3)*(e3^2-e2^2)+Nd1(5)*(1-
e3^2))+r*(N(2)*(-2*e1)+Nd1(2)*(e2^2-e1^2)+Nd1(4)*(e3^2-e2^2)+Nd1(6)*(1-e3^2)) 
E2=(N(1)*(2*e2)+Nd2(1)*(e2^2-e1^2)+ N(3)*(-2*e2)+Nd2(3)*(e3^2-e2^2)+Nd2(5)*(1-
e3^2))+r*(N(2)*(2*e2)+Nd2(2)*(e2^2-e1^2)+N(4)*(-2*e2)+Nd2(4)*(e3^2-
e2^2)+Nd2(6)*(1-e3^2)) 
E3=(N(3)*(2*e3)+Nd3(1)*(e2^2-e1^2)+ N(5)*(-2*e3)+Nd3(3)*(e3^2-e2^2)+Nd3(5)*(1-
e3^2))+r*(N(4)*(2*e3)+Nd3(2)*(e2^2-e1^2)+N(6)*(-2*e3)+Nd3(4)*(e3^2-
e2^2)+Nd3(6)*(1-e3^2)) 
 
%solving E1, E2 and E3 in Newtons method 
fun=inline(' [E1;E2;E3]','e1','e2','e3') 
[e1,fval,iter,exieflag]=Newtons(fun,[0.5;0.5;0.5]) 
 
 


