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ABSTRACT

In this work, a novel signal decomposition method named Adaptive Fourier Decom-

position (AFD) is investigated, which can decompose signals to some mono-components

that only contain positive phase derivatives based on their energy distributions. With

such nice characteristics, the AFD is applied removing noise from ECG signals. More

specifically, a judgment is defined based on the estimated signal-to-noise ratio of a noisy

signal to stop the recursive AFD process, with which a novel AFD-based denoising al-

gorithm is proposed for ECG signals. In validation, artificial and real ECG signals

from the MIT-BIH Arrhythmia Database with additive Gaussian white noise, muscle

and electrode motion artifacts are used. Moreover, four other denoising methods based

on the Fourier transform, the wavelet transform, the empirical mode decomposition and

the ensemble empirical mode decomposition are used to compare with the AFD-based

denoising method. The simulation results indicate that the proposed AFD-based method

performs mostly the best. In addition, from the simulation study, two rules of the AFD

are concluded which can be used to choose and adjust the decomposition level of the

AFD for denoising. In summary, this report shows that the AFD is a promising tool for

ECG signal denoising.
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CHAPTER I INTRODUCTION

The adaptive Fourier decomposition, also called AFD, is a novel signal decompo-

sition method proposed by Qian et al. It offers decompositions of signals into basic

pieces that only contain positive frequencies by using adaptive basis functions [30].

Moreover, the AFD decomposes signals based on their energy distributions. Therefore,

its decomposition components not only have a good convergence property but also fol-

low the sequential extraction of the energy starting from the high-energy mode to the

low-energy mode.

According to this characteristic of the AFD, it is very suitable for some noisy signals

whose corresponding pure signals and noise have energy differences to do the denoising

process. The electrocardiogram (ECG) signals belongs to this kind of signals. Normally,

a measurement ECG signal is weak and contain extraneous signals from the muscles,

lungs and the internal electronics of the recording devices [11]. Although some linear

and nonlinear denoising methods of ECG signals have been proposed, they all have

some problems which may damage original signals or make them unpractical.

The Fourier transform is a traditional signal processing method. It transfers sig-

nals from their time domain to their frequency domain. There are many kinds of filters

based on the Fourier transform method. For these filters, they reconstruct the origi-

nal signal by using their corresponding frequency components. Although the Fourier

transform is very powerful for removing frequency-related noise, it is not very useful

when the frequency spectrums of noise and original signals overlap each other. Nor-

mally, this problem is very serious for ECG signals. The frequency range of ECG

signals is from 0.05Hz to 100Hz. The frequency range of ECG noise is from 0.5Hz to

1000Hz. Therefore, the denoising method based on the Fourier decomposition method

may damage original ECG signals. Furthermore, the Fourier transform is only suit-

able for strictly periodic and stationary signals. However, ECG signals usually are

non-stationary. Therefore, the Fourier decomposition method is not very suitable for

the denoising process of ECG signals. To overcome these drawbacks of the Fourier

transform method in the denoising process, the denoising methods based on the wavelet

transform were proposed [1, 12, 32, 35, 39]. The wavelet transform decomposes signals
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based on a mother wavelet. It considers not only the frequency information but also

the time information. Moreover, these wavelet-based denoising method have a good

performance for the denoising of the Gaussian white noise. However, this method has

two significant problems. First, its decomposition results are related with the choice of

the mother wavelet. Different mother wavelets produce different decomposition results,

which produces very large difference of filtered results. In addition, it is difficult to

find a suitable mother wavelet that can always provide good filtered results. Usually,

when the signal is changed, the corresponding mother wavelet also need to be changed,

which makes this method unpractical. Second, in practice, the wavelet transform may

lead to the oscillation of the reconstructed ECG signal or reduce the amplitude of the

ECG waveforms [32], which may damage some useful information of the original ECG

signals. To solve these two problems of the wavelet transform, some other papers pro-

pose the denoising methods based on the empirical mode decomposition (EMD) [8,41].

The main technique of the denoising method based on the EMD is to decompose the

noisy signal into some intrinsic mode functions (IMFs), remove IMFs that contain most

noise and then reconstruct the signal with remaining IMFs. Since the decomposition

is based on the local characteristics of the data, the basis function of the EMD can be

derived adaptively. In addition, the EMD has good localization properties [29]. There-

fore, the oscillation problem does not exist in its reconstructed signals. However, this

method does not have an explicit mathematical explanation. In practice, it is difficult

to understand its decomposition components and interpret its decomposition results.

Therefore, it is difficult to define a threshold of the decomposition level of the EMD.

Usually, the Fourier transform still needs to be applied analyzing the decomposition

components of the EMD which makes the EMD process not meaningful. Moreover, in

some cases, analytic phase functions of IMFs are not monotone [36]. In other words,

a physically meaningful analytic instantaneous frequency of IMFs cannot be defined in

generally. In addition, IMFs may have negative phase derivatives in practice, which will

effect the analysis of the decomposition results based on the EMD and the threshold

judgment [29].

Comparing with these three classical signal processing methods, the AFD mainly

has three major advantages. First, the basis functions are fixed to signals adaptively.

Therefore, we don’t need to worry about the problem of choosing basis functions. Sec-
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ond, it has a rigorous mathematical foundation, which makes finding physical mean-

ing of its decomposition components easy. Third, all decomposition results are mono-

components whose analytic phase derivatives are non-negative. In other words, it allows

application-related mathematical analysis of signals. Since the AFD has these advan-

tages, in this report, the AFD is applied implementing a denoising process for the ECG

signals. The technique of the AFD-based denoising process is to stop the recursive

AFD process when enough mono-components have been obtained and reconstruct the

filtered result using these mono-components. This report will mainly focus on how to

find the judgment to determine if enough mono-components have been obtained and

show the effectiveness of the AFD in the ECG denoising field. This method is demon-

strated through an artificial ECG signal generated by a ECG model [22] and real ECG

signals from the MIT-BIH Arrhythmia Database [14,23]. Three different types of noise,

included additive Gaussian white noise, muscle and electrode motion artifacts, is added.

For the simulation results, four types of denoising methods based on the Fourier trans-

form, the wavelet transform, the EMD and the ensemble empirical mode decomposition

(EEMD) are applied comparing with the proposed method to show that the proposed

AFD-based denoising method is a promising tool for ECG signal denoising.

This report is structured as follows. In Chapter 2, the existing signal processing

methods and their corresponding technique of the signal denoising methods are re-

viewed. In Chapter 3, a brief introduction to the AFD method included its principle

and mathematical foundation proposed by Qian et al. is given. In Chapter 4, I work

on how to use the AFD to do the denoising process. a judgment to make the AFD

practical in the signal denoising process is defined. In addition, how to implement it is

introduced. In Chapter 5, several simulation results of the proposed AFD-based signal

denoising method are shown by using two types of ECG signals with three types of

noise. Moreover, the filtered results of other denoising methods based on the low-pass

filter, the wavelet-based, the EMD-based and the EEMD-based denoising methods are

applied comparing with the filtered results of the AFD-based denoising method. Then,

according to these simulation results, some small problems of this proposed denois-

ing method can be found. These problems and how to solve them are also discussed in

Chapter 5. Finally, in Chapter 6, a conclusion and discussion about the further directions

of the application of the AFD are given.
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CHAPTER II BACKGROUND AND LITERATURE REVIEW

2.1 FOURIER TRANSFORM

2.1.1 INTRODUCTION TO THE FOURIER TRANSFORM

Fourier transform is a traditional mathematical transform which is employed to

transfer a signal from its time domain to its frequency domain. It decomposes signals to

a linear combination of several trigonometric functions as shown in Eq. (2.1) [25]. Fig.

2.2 shows the principle of Fourier transform more clearly. It is an example of Fourier

transform for x(t) = e−3|t−0.5| shown in Fig. 2.1. Although there should be a sinusoidal

wave in every frequency from −∞ to ∞, only several waves are shown in Fig. 2.2 to

make sure that shapes of components can be seen clearly. For different components,

they are all sinusoidal waves which don’t have phase difference. The only differences

are their frequencies and amplitudes. Therefore, it is easy to get the frequency point of

view for a strictly periodic and stationary signal by using the Fourier transform.

x(t) =
∞

∑
k=−∞

ak [cos(2πk f t)+ j sin(2πk f t)] (2.1)

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

t (s) 

x(
t)

=
e−

3|
t−

0.
5|

Fig. 2.1 Time domain shape of x(t) = e−3|t−0.5|.
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Fig. 2.2 Example of Fourier transform for x(t) = e−3|t−0.5|.

For Fourier transform, signals are considered as a linear combination of complex

exponential functions as shown in Eq. (2.2) [25]. X( jω) is the Fourier transform of

x(t). Eq. (2.3) is called Fourier transform or Fourier integral of x(t). It extracts spectrum

information from the signal. Eq. (2.2) is called inverse Fourier transform of X( jω). It

synthesizes the time-domain signal from the spectral information [25, 31]. Eq. (2.2)

and Eq. (2.3) are called Fourier transform pair. By using this transform pair, it is easy

to transfer signals from time domain to frequency domain or from frequency domain to

time domain.

x(t) =
1

2π

∫ ∞

−∞
X( jω)e jωtdω (2.2)

X( jω) =
∫ ∞

−∞
x(t)e− jωtdt (2.3)

From the Fourier transform, we can get the information of magnitudes and phases

for different frequencies at the same time. The magnitude determines the amplitude

of each complex exponential function required to reconstructed the desired signal x(t)

from its Fourier transform. It determined as

|X( jω)|=
√

Re{X( jω)}2 + Im{X( jω)}2. (2.4)

The phase determine the time shift of each decomposition component relative to refer-
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ence of time zero. It can be shown as

θ(ω) = tan−1
(

Im{X( jω)}
Re{X( jω)}

)
. (2.5)

As we can see from this introduction to the Fourier transform, the Fourier trans-

form is able to provide accurate frequency information included the amplitude and the

phase information. In addition, it contains several properties that help simplify function

domain transformations [11]:

(1) Linearity

The Fourier transform is a linear operator. Therefore, for any constants a1 and a2,

F {a1x1(t)+a2x2(t)}= a1X1( jω)+a2X2( jω). (2.6)

This property demonstrates that the scaling and superposition properties defined for

a liner system also hold for the Fourier transform.

(2) Time Shifting

If x1(t− t0) is a signal in the time domain, its corresponding Fourier transform can

be shown as

F {x1(t− t0)}= X( jω) · e− jωt0 . (2.7)

(3) Frequency Shifting

If X1(ω−ω0) is the Fourier transform of a signal, its corresponding inverse Fourier

transform is

F−1 {X1(ω−ω0)}= x(t) · e− jω0t . (2.8)

(4) Convolution Theorem

The convolution between two signals x1(t) and x2(t) in the time domain is defined

as

x1(t)∗ x2(t) =
∫ ∞

−∞
x1(t)x2(t− τ)dτ (2.9)

where ∗ is the convolution operator. Its corresponding equivalent expression in the

frequency domain is

C( jω) = F {x1(t)∗ x2(t)}= X1( jω) ·X2( jω) (2.10)
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According to these properties, Fourier transform is easy to be implemented for dif-

ferent kinds of situations. However, it also has three serious drawbacks. First, after the

Fourier transform, the time information of the original signal is lost. Sometimes, the

time information for biosignals is very important. Second, the convergence property

is bad. Whenever the Fourier transform is calculated, all frequency domain should be

scanned. For most biosignals, they only contain low frequency components. However,

the Fourier transform still need to consider high frequency components. Therefore, the

Fourier transform converges very slow. In addition, since the Fourier transform consid-

ers the whole time domain, it misses the local changes of high-frequency components in

the signal [31], which is the third problem of the Fourier transform. For these drawbacks

of the Fourier transform, it is not very suitable for the denoising process of biosignals.

2.1.2 ECG DENOISING BASED ON THE FOURIER TRANSFORM

There are some types of filters based on the Fourier transform. According to the

characteristics of the Fourier transform, they are all related to the spectrum of signals.

The techniques of these filters are almost same. First, the Fourier transform transfers

signals from the time domain to the frequency domain. Then, according to the frequency

characteristics of original signals and noise, the frequency ranges of noise are removed.

Finally, the remaining decomposition components are used to reconstructed the filtered

results.

Practically, most filters can be subdivided into three broad classes, according to

their modified frequency spectrum of the desired signal. These classes include low-

pass filter, high-pass filter and band-pass filters. Low-pass filters work by removing

high frequency from a signal while selectively keeping the low frequencies as shown

in Fig. 2.3(a) [11]. It allows the low frequencies of the signal to pass through the filter

uninterrupted. High-pass filters perform exactly the opposite function of low-pass filters

as shown in Fig. 2.3(b) [11]. They selectively pass the high frequencies but remove the

low frequencies of the signal. Band-pass filters are like a type of filters between the

low-pass filters and high-pass filters. They don’t remove the low or high frequencies

simply, but remove both high and low frequencies and keep selectively a small band of

frequencies as shown in Fig. 2.3(c). The function of band-pass filters can be achieved

by combining low-pass filters and high-pass filters. For the band-pass filters, there is a
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special case. These filters like a inverse of band-pass filters. They normally are called

band-stop filters or notch filter as shown in Fig. 2.3(d).

(a) low-pass filter

(b) high-pass filter

(c) band-pass filter

(d) band-stop filter

Fig. 2.3 Frequency domain magnitude response plot.
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For ECG signals, there are mainly three types of noise that are corresponding to

these three types of filters. Power line noise is a very comment noise whose frequency

is 50Hz or 60Hz [11]. Normally, its amplitude is 50% of the maximum value of the

ECG signal. According to the frequency range of this type of noise, band-pass filters

can be used to remove it. Another type of noise is the electrode contact noise. This

type noise normally cause the baseline drift of the ECG signals. The frequency range of

the electrode contact noise usually is smaller than 0.5Hz. High-pass filters with cut-off

frequency at 0.5Hz can be used to remove this type of noise [11]. The third type of

noise is the muscle artifact, also called EMD noise. The frequency range is from 20Hz

to 1000Hz [11]. Low-pass filters with 40Hz cut-off frequency can be used to remove

this type of noise.

Although these filters based on the Fourier transform can remove noise from ECG

signals, they also damage original signals’ information. The frequency range of ECG

signals usually is from 0.05Hz to 100Hz [11]. Therefore, there are overlapped frequency

ranges between the ECG signals and noise. For filters based on the Fourier transform,

they cut off selected frequency components directly. However, these selected frequency

ranges also contain some useful information from the original ECG signals. This is a

very serious problem of filters based on the Fourier transform.

2.2 WAVELET TRANSFORM

2.2.1 INTRODUCTION TO THE WAVELET TRANSFORM

To overcome drawbacks of filters based on the Fourier transform, the wavelet trans-

form was proposed. The wavelet transform is similar with the Fourier transform. It is

also a method to decompose original signal to some basis components. It isn’t based

on sinusoidal waves but based on wavelets, which are small waves of varying frequency

and limited duration. The most important aspect of the wavelet basis is that all wavelet

functions are constructed from a single mother wavelet. This wavelet is a small wave or

a pulse [31]. It can transfer a continuous function into a highly redundant function [13].

Although wavelet transform and short time Fourier transform all can do time-frequency

analysis, they are different. The most important feature of the wavelet transform is that

it analyzes different frequency components of a signal with different resolutions.

If there is a function f ( t
a) for any scale a, a function with lower frequency will be

17/70



obtained which is able to describe slowly changing signals when a > 1, and a function

with higher frequency will be obtained that can detect fast changing signals. In other

words, the scale is inversely proportional to the frequency. For the wavelet transform,

the resolution of frequencies σω and the resolution of time σT are not same. Therefore,

good resolution of frequency or time in a space of time can be obtained as shown in Fig.

2.4.

Fig. 2.4 Time-frequency space and resolution cells of wavelet transform.

Wavelet functions aren’t the same as sinusoidal waves. They aren’t only localized

in frequency but also localized in time. But wavelets functions only can offer the good

time resolution or the good frequency resolution. There are several wavelet families.

Different wavelet families has its own character shape and fixed interval of time. Fig.

2.5 shows 4 wavelet families as examples. The number of wavelet families is much

larger than 4.
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Fig. 2.5 Four wavelet families.

A wavelet can be defined by the scale and shift parameters a and b,

ϕab(t) =
1√
a

ϕ
(

t−b
a

)
(2.11)

while the wavelet transform is given by the inner product

W (a,b) =
∫ ∞

−∞
ϕab(t) f ∗(t)dt (2.12)

with a ∈R+,b ∈R. The wavelet transform defines an L2(R)→ L2(R2) mapping which

has a better time-frequency location than the short time Fourier transform [31].

2.2.2 ECG DENOISING BASED ON THE WAVELET TRANSFORM

The technique of the filters based on the wavelet transform is also similar with the

filters based on the Fourier transform. First, the wavelet transform decompose signals

to decomposition components. Then some decomposition components which contains

noise are removed. Finally, the remaining decomposition components are used to recon-

struct the filtered results. Since the decomposition components of the wavelet transform

are related with the mother wavelet. Different mother wavelet produce different decom-

position components and different filtered results. Therefore, choosing a suitable mother

wavelet is very important. However, it is not easy. For ECG signals, the shapes and char-

acteristics of signals from different records may different. Therefore, it is difficult to

choose a appropriate mother wavelet once and for all. Most papers use the Daubechies
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wavelets and Symlet wavelets as the mother wavelet families [1,12,32,35,39]. Another

problems of filters based on the wavelet transform is the threshold. How to define or

choose a suitable threshold to make sure that most original signal can be reconstructed is

also very important. There are mainly two kinds of classical thresholds for the wavelet

transform [1, 32]: hard threshold and soft threshold. Beside these two kinds of thresh-

old, some papers provide improved threshold. [32] provides a kind of improved thresh-

old which can provide a better filtered performance for ECG signals. [35] provides a

kind of adaptive threshold whose parameters can fix to the ECG signals adaptively. Al-

though the techniques of different threshold are different, they are all based on the hard

threshold and soft threshold. Therefore, these two basic thresholds are introduced:

(1) Hard threshold

For the hard threshold, all selected decomposition components are removed totally.

Remained decomposition components also are used totally. Fig. 2.6(b) shows the

idea of the hard threshold. Eq. (2.13) shows the hard threshold of the wavelet

transform where d j and Tj are the detailed coefficients obtained by the wavelet

transform and the threshold respectively [32].

d̂ j =

 d j
∣∣d j

∣∣> Tj

0
∣∣d j

∣∣≤ Tj

(2.13)

(2) Soft threshold

For the soft threshold, only part of selected decomposition components are re-

moved. Fig. 2.6(c) shows the idea of the soft threshold. Eq. (2.14) shows the

soft threshold of the wavelet transform where d j and Tj are the detailed coefficients

obtained by the wavelet transform and the threshold respectively [32].

d̂ j =

 sgn(d j)
(∣∣d j

∣∣−Tj
) ∣∣d j

∣∣> Tj

0
∣∣d j

∣∣≤ Tj

(2.14)
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Fig. 2.6 Threshold signals of the wavelet transform.
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Table 2.1 Performance comparision of different wavelet families and different thresh-

olds

Daubechies wavelets Symlet wavelets

Wavelet Threshold SNR Wavelet Threshold SNR

db2
Hard 14.4833

sym2
Hard 14.2894

Soft 14.8544 Soft 14.5527

db3
Hard 14.4590

sym3
Hard 14.7639

Soft 14.7818 Soft 14.7639

db4
Hard 14.4104

sym4
Hard 14.3775

Soft 14.7232 Soft 14.6844

db5
Hard 14.5275

sym5
Hard 14.4386

Soft 14.9290 Soft 14.6972

db6
Hard 14.3753

sym6
Hard 14.3517

Soft 14.7343 Soft 14.6959

db7
Hard 14.4861

sym7
Hard 14.7601

Soft 14.8007 Soft 14.7601

db8
Hard 14.3846

sym8
Hard 14.3713

Soft 14.6935 Soft 14.6522

There is a summary of these two kinds of thresholds and two kinds of mother wavelet

families: Daubechies wavelets and Symlet wavelets as shown in Table 2.1 [1, 32]. This

table shows the signal-to-noise ratio (SNR) of filtered ECG signals’ results for different

wavelet families and different thresholds. It can be seen that the soft threshold almost

can provide a better performance than the hard threshold. However, it is difficult to find

which wavelet can provide stable good performances for ECG signals. Most of the time,

the Daubechies wavelets can provide better performances.

From this introduction, it can be seen that the most serious problem of the wavelet

transform is how to choose a suitable wavelet for its signal decomposition. Since its

basis functions can fix to signals adaptively, users need to choose them by their expe-

rience, which makes this method not practical. Although the wavelet transform over-

comes some drawbacks of the Fourier transform, it still not very suitable for ECG signal

denoising.
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2.3 EMPIRICAL MODE DECOMPOSITION

2.3.1 INTRODUCTION TO THE EMPIRICAL MODE DECOMPOSITION

The empirical mode decomposition, also called EMD, is a method to decompose

any unstable and nonlinear data set into a finite and small number of ‘intrinsic mode

functions‘, also called IMFs, that admit well-behaved Hilbert transforms [16]. The

original signal can be shown in Eq. (2.15) where c j(t) and rN(t) are the jth order IMF

and the residual signal [37].

s(t) =
N

∑
j=1

c j(t)+ rN(t) (2.15)

As last sections discussed, Fourier transform and wavelet transform have some dis-

advantages. For Fourier transform, although it can transfer signals from time domain to

frequency domain, it has many disadvantages. It requires that the input must be stable

and converge signal. But normally, actual signals are not stable and converge. And

since it use the linear combination of trigonometric functions, the energy will spread

to whole frequency spectrum which has two drawbacks. First, meaningless negative

frequency will be generated. Second, it is difficult for electrical devices to analyze its

infinite results. The time information also is lost. Although STFT can save time infor-

mation, the fix length of windows makes the time resolution and frequency resolution

bad. For wavelet transform, it use a wavelet to scan the signal with different window

length to overcome the drawback of STFT but the fixed type of wavelets makes choosing

a suitable kind of wavelets difficult.

Although EMD is almost similar to the wavelet transform, EMD doesn’t need to

choose a basis function before analyzing a data sequence. The basis function will be

obtained in the analysis process [16]. Therefore, the basis function will be fixed to the

original data automatically. It overcomes the disadvantage of the wavelet transform.

The decomposed results of EMD is some IMFs. They are some signals which satis-

fied the following two conditions:

(1) In the whole data set, the number of extrema and the number of zero crossing must

either equal or differ at most by one;

(2) At any point, the mean value of the envelope defined by the local maximum and the
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envelope defined by the local minimum is zero.

According to the above two conditions, IMFs are sinusoidal-like waveforms whose

amplitudes and phases are changed in different time. Therefore, Eq. (2.16) can be used

to present IMFs [16]. Notice that the frequencies of IMFs should be always positive.

And IMFs are all converged. Then it is possible to use Hilbert transform to analysis

results of EMD. The Hilbert transform is an LTI operator which takes a function u(t)

and produces a function H(u)(t) with the same domain [15]. The schematic diagram

shown in Fig. 2.7 shows the process of Hilbert transform where h(t) = 1
πt .

f (t) = δ (t)cos [θ(t)] (2.16)

Fig. 2.7 Schematic diagram of Hilbert transform.

Since the Hilbert transform can be seen as a LTI system, the convolution can be used

to calculate Hilbert transform shown in Eq. (2.17). From Eq. (2.17), we can find that

Hilbert transform can not be used to analysis all signals. It only can be used to analyze

signals which are converged. This is the reason why EMD is needed to decompose

signals to IMFs. There are two properties of Hilbert transform shown in Eq. (2.18) and

Eq. (2.19). Combining these two properties and Eq. (2.16), it is easy to find that Hilbert

transform can be used to analyze instantaneous phase of IMFs by using Eq. (2.20) which

provides a way to get the instantaneous frequency.

H(u)(t) = h(t)∗u(t) =
1
π

∫ ∞

−∞

u(τ)
t− τ

dt (2.17)

H(sin(t)) =−cos(t) (2.18)

H(cos(t)) = sin(t) (2.19)

θ(t) = tan−1 H( f )(t)
f (t)

(2.20)
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To implement the EMD, Hilbert-Huang transform, also called HHT, is proposed.

The calculation steps are shown below [16, 40, 43].

(1) Initialize r0(t) = x(t), j = 1

(2) Extract the j-th IMF:

(a) Initialize h0(t) = r j(t),k = 1

(b) Locate local maximum and minimum of hk−1(t)

(c) Cubic spline interpolation to define upper and lower envelope of hk−1(t)

(d) Calculate mean mk−1(t) from upper and lower envelope of hk−1(t)

(e) Define hk(t) = hk−1(t)−mk−1(t)

(f) If stopping criteria are satisfied then h j(t) = hk(t) else go to 2.(b) with k = k+1

(3) Define r j(t) = r j−1(t)−h j(t)

(4) If r j(t) still has at least two extrema then go to 2.(a) with j = j+1 else the EMD is

finished.

(5) r j(t) is the residue of x(t)

From steps, we can find that this method is for continuous signals. But in practical

case, discrete signals are actually to be analyzed. For a discrete data sequence, there are

two problems which are not mentioned clearly. First is how to define the local extrema.

Second is how to adjust whether a signal is an IMF.

For the first problem, the difficulty is to find locations of extrema values. There are

two ways to define extrema values for discrete data sequences:

(1) If a point is satisfied Eq. (2.21), it is the local maximum. If a point is satisfied Eq.

(2.22), it is the local minimum. But there are two special cases. First, x[n−1] = x[n],

and they are all local maximum or local minimum. Normally, the center point will

be used. Second, boundary points can not be used in Eq. (2.21) and Eq. (2.22).

In most cases, there are two ways to deal with boundary points. First, let them

become extrema values directly. Second, copy a part of original data sequence
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to boundary to extend original data set. Then use Eq. (2.21) and Eq. (2.22) to

determine boundary points.  x[n−1]< x[n]

x[n+1]< x[n]
(2.21)

 x[n−1]> x[n]

x[n+1]> x[n]
(2.22)

(2) The data sequence comes from the sampling process of the original continuous

signal. The second way is to recover the data sequence to original continuous signal.

Then find extrema points of the continuous signal. This way is very complex but

accurate.

For the second problems, there are also two methods [16]:

(1) According to the definition of IMF, if hk(t) satisfied the definition of IMF, hk(t) is

IMF. Since numbers of extrema and zero are difficult to be determined, this method

is difficult to be used.

(2) Calculate SDk using Eq. (2.23) [16]. Normally, SDk will be in 0.2 ∼ 0.3 if hk is

IMF. Therefore, it can be used as the stopping criteria. Although it is easy to be

calculated, it is difficult to define the critical value of SDk. Different critical value

of SDk will make different results for the same signal.

SDk =
∑T

t=0 [hk−1(t)−hk(t)]
2

∑T
t=0 h2

k−1(t)
(2.23)

2.3.2 INTRODUCTION TO THE ENSEMBLE EMPIRICAL MODE DECOMPOSITION

For EMD method, it has a problem – “Mode mixing” problem. This problem mainly

has two performances [43]:

(1) Single IMF consists signals of widely disparate scales.

(2) Different IMF consists a similar scale residing signal.
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In other words, different IMFs should contain different frequency part signals and

doesn’t have the alias with each others but there will be the alias between different

IMFs when the mode mixing problem happens. It will decrease physical meanings of

IMFs. The ensemble empirical mode decomposition (EEMD) is a method to avoid this

problem of EMD method.

The EEMD method is a method which combines the EMD method and the noise-

assisted data analysis (NADA) method [7, 18, 43]. In the NADA method, the ensemble

mean is used as a powerful approach, where data are collected by separate observations,

each of which contains different noise. The observations are the combination between

the original data and added white noise as shown in Eq. (3.1) where x(t) is the original

data set, wi(t) is the white noise which is different for different observations and xi(t) is

the new observation data set.

xi(t) = x(t)+wi(t) (2.24)

If the number of the observation is enough, the noise in each trial will be canceled

out in mean value of all observations. And the oscillation of each IMFs will also be can-

celed out after doing the ensemble mean. Therefore, by adding finite noise, the EEMD

method eliminated largely the mode mixing problem and preserve physical uniqueness

of decomposition.

The calculation processing is very easy to understand as shown in Fig. 2.8.
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Fig. 2.8 Calculation steps of EEMD.

Although steps are simple, there are some detail which are needed to be considered:

(1) The maximum loops number, also called the maximum observations number, should

be defined. Since added white noises and oscillations of each IMF need to be can-

celed out after the ensemble mean, the loops number should be large enough.

(2) The amplitude of the added white noise should be considered. According to the

signal averaging principle, the signal-to-noise ratio (SNR) after averaging is shown
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in Eq. (3.2) where SNRafter and SNRbefore are signal-to-noise ratios after and

before averaging and N is the number of trials which are used to do the averaging.

Since the added noise need to be removed after ensemble mean, SNRafter should

be as high as possible. If SNRbefore is very small, SNRa f ter cannot be very high

though N is very large. Therefore, the amplitude of the added white noise also

should be controlled.

SNRafter =
√

N ·SNRbefore (2.25)

(3) In the simulation, there are two EMD programs which can be used. One is created

by G. Rilling [34]. In this program, The boundary situation and the continuous

critical points situation are considered. Although the speed is slow, results are good.

The other is provided by Zhaohua Wu [42], the author of [43]. This program is

used to calculate EEMD directly. In this program, the previous situations are not

considered. Except these two situations, other parts are same.

2.3.3 ECG SIGNAL DENOISING BASED ON THE EMD AND THE EEMD

The technique of the denoising process based on the EMD and the EEMD is similar

with the denoising process based on the wavelet transform. First, the EMD or the EEMD

decomposes signals to IMFs. Then some IMFs that include the original signals are

selected to reconstruct the filtered results. For the EMD and EEMD, their decomposition

results are all adaptive and only contain positive phase derivatives. However, they all

don’t have a rigorous mathematical functions not only for their procedures but also

for their decomposition components. Therefore, it is difficult to find a reasonable and

effective method to analysis their decomposition components. Thus it is also difficult to

determine which decomposition components should be used to reconstructed the filtered

results. According to the characteristics of the IMFs: different IMFs should contain

different frequency ranges, some paper use the Fourier transform to analysis IMFs [19,

21]. They use the Fourier transform to get spectrums of IMFs. According to these

spectrums, IMFs who contain original signals’ frequency spectrum can be found. Then

these IMFs can be used to reconstructed the filtered results. Except these methods

in which the Fourier transform is used directly, the spectral flatness (FT) factor and
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a threshold T of the FT are used to the ECG denoising [6]. The FT is defined as

FT =

L
√

∏L−1
n=0H(n)

∑L−1
n=0 H(n)

L

. (2.26)

Normally, the threshold T is taken as 0.09 [6]. Its corresponding steps of this method

is shown in Fig. 2.9. Comparing with the wavelet transform, average simulation results

of this method are shown in Table 2.2 [6]. It can be seen that the SNR is improved

by using this method. In addition, the results of the EMD is better than the wavelet

transform. However, the disadvantage of these methods are also very obvious. The final

analysis method is still the Fourier transform. They still are from the frequency point

of view to do signal denoising. Therefore, they still contains the disadvantages of the

Fourier transform that I have discussed in Section 2.1. Until now, there still are not

very reasonable and effective analysis methods for the decomposition components of

the EMD and the EEMD. Most of the time, we still need to use our experience to find

the useful decomposition components.

Fig. 2.9 ECG denoising method based on the EMD with the spectral flatness.
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Table 2.2 Simulation results of the ECG denoising method based on the EMD with the

spectral flatness

SNR of

noisy signal (dB)

SNR of filtered result (dB)

Wavelet transform EMD

5 8.75 9.92

10 11.96 14.71

15 15.31 18.55

For ECG denoising, the most important thing is to get actual value of the QRS

complex. However, sometimes, the filtered results of the EMD cannot reconstructed the

QRS range very well. To protect the QRS range, protect windows normally are used in

the ECG denoising process based on the EMD [3,17,38,41]. Normally, a Tukey window

is used as the protection window shown in Fig. 2.10 [3, 17, 41]. The QRS duration of

noisy signals is shown in Fig. 2.11 [3]. After using the protection window, one ECG

signal is separated to different parts. For different parts, according to their different

SNR, different weight can be added to IMFs to reconstructed a accurate filtered results.

The reconstructed result can be shown as

x̂(t) =
P

∑
i=1

Φi(t)ci(t)+
P

∑
i=1

aiΦi(t)ci(t)+
N

∑
i=P+1

ci(t) (2.27)

where 0 < ai < 1 is the attenuation coefficient as the weight of the non-QRS duration,

and Φi is the protection window.

Fig. 2.10 Tukey window function.
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Fig. 2.11 QRS duration of a noisy ECG signal.

Although the denoising methods based on the EMD overcomes some drawbacks of

the denoising methods based on the Fourier transform and the wavelet transform, the

EMD doesn’t have a rigorous mathematical function which makes the decomposition

components of the EMD difficult to be understood and analyzed. Therefore, they are

still not very suitable for the ECG denoising.
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CHAPTER III ADAPTIVE FOURIER DECOMPOSITION

3.1 INTRODUCTION TO THE ADAPTIVE FOURIER DECOMPOSITION

The adaptive Fourier decomposition, also called AFD, is a novel signal decomposi-

tion method proposed by Qian et al. [27, 30]. It involves the adaptive decomposition of

a given signal G(t) that is in H2(∂D) space where D = {z ∈ C : |z|< 1} and C is the

complex plane into a series of mono-components [27, 30]. After the AFD, G(t) will be

decomposed into a summation of a series of mono-components sn(t)’s and a standard

remainder RN(t) shown in Eq. (3.1) [27, 30]. From Eq. (3.1), it can be seen that signals

in H2(∂D) space only have positive frequency. In addition, the decomposition compo-

nents of the AFD are also only contain positive frequency components. However, in

practice, most real signals s(t)’s are in L2(∂D) space. In other words, according to the

Fourier transform, signals in practice contain positive and negative frequency compo-

nents at the same time. Therefore, it is impossible to reconstruct signals from L2(∂D)

space to H2(∂D) space. Thus the relationship shown in Eq. (3.2) where f and f+ are

signals in L2(∂D) space and H2(∂D) space is used to reconstruct original signals from

mono-components [30].

G(t) =
∞

∑
k=0

cke jkt =
N

∑
n=1

sn(t)+RN(t),
∞

∑
k=0
|ck|2 < ∞ (3.1)

f =
∞

∑
k=−∞

cke jkt = 2 Re
{

f+
}
− c0,

∞

∑
k=−∞

|ck|2 < ∞ (3.2)

The AFD use the rational orthogonal system, or the Takenaka-Malmquist system,

{Bn}∞
n=1, as its basis functions where

Bn(e jt) =

√
1−|an|2

1−ane jt

n−1

∏
k=1

e jt−ak

1−ake jt , (3.3)

an ∈ D, n = 1,2, · · · [27, 30]. For Bn(e jt), it has two characteristics. First, in Eq. (3.3),
e jt−ak
1−ake jt is a complex number. In addition, its amplitude is always equal to 1 for any e jt

and an. Therefore, Bn(e jt) can be represented as [27, 28]

Bn(e jt) = ρn(t)e jϕn(t). (3.4)
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Second, characteristics of Bn(e jt) are related with an. Different arrays [a1,a2, · · · ,an]

produce different Bn(e jt). Since the magnitude of Bn is always one, an mainly decides

the phase characteristics. Fig. 3.1 shows Bn(e jt) in the complex plane. Bn(e jt) are

the arrows whose start points are the original point, and stop points are in the unit

circle. The center point of this unit circle is not always same as the original point. an

decides the location of this unit circle. From the phase derivatives of Bn(e jt), it can

seen that Bn(e jt) are not always mono-components. To make sure that they are mono-

components, a1 must be 0. In addition, comparing Eq. (3.3) and the basis function of

the Fourier transform e jt , it can be found that Bn(e jt) will become the basis function of

the Fourier transform if all an’s are equal to 0. Therefore, the Fourier transform can be

seem as a special case of the adaptive Fourier decomposition. As I have mentioned in

Section 2.1,the most serious problem of the Fourier transform is the bad convergence

properties. The adaptive Fourier decomposition solves this problems. Its basis functions

fixes signals adaptively and are obtained based on the energy distributions of signals. All

mono-components are from high energy to low energy. Moreover, they converge very

fast. These characteristics are all decided by an. Therefore, the main purpose of the AFD

is to find such kind of array {a1,a2, · · · ,an} that is able to achieve these characteristics.

Fig. 3.1 Bn(e jt) in complex plane.
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3.2 MATHEMATICAL FOUNDATION OF THE AFD

In the algorithm of the AFD, all mono-components will be found one by one in

the energy point of view. The AFD extracts mono-components from the high-energy

mode to the low-energy mode sequentially. Since the decomposition components of the

AFD must be mono-components first, a1 needs to be 0 as I have discussed in Section

3.1. Then I will introduce how to make sure that all mono-components converge fast.

To find energy relationship easily, reduced remainders Gn’s are defined by using their

corresponding standard remainders Rn−1’s [30]:

Gn(e jt) = Rn−1(e jt)
n−1

∏
l=1

1−ale jt

e jt−al
. (3.5)

Then Eq. (3.1) can be expressed by using reduced remainders Gn’s:

G(t) =
N

∑
n=1

⟨
Gn,e{an}

⟩
Bn(e jt)+GN+1(e jt)

N

∏
n=1

e jt−an

1−ane jt (3.6)

where e{an}(e
jt) is called the evaluator at an which can be considered as a dictionary

consisting of elementary functions [30]:

e{an}(e
jt) =

√
1−|an|2

1−ane jt . (3.7)

According to Eq. (3.6), the energy of G(t) can be calculated by [30]

∥G(t)∥2 =
N

∑
n=1

∣∣⟨Gn,e{an}
⟩∣∣2 +∥∥GN+1(e jt)

∥∥2
. (3.8)

To make the energy of the standard remainder
∥∥GN+1(e jt)

∥∥2 minimum, the maximal

projection principle shown in Eq. (3.9) is used to find an which can produce the largest∣∣⟨Gn,e{an}
⟩∣∣2 for every step n [30]. After getting the array {a1,a2, · · · ,an}, the main

part of the AFD has been finished.

an = arg max
{∣∣⟨Gn,e{an}

⟩∣∣2 : an ∈ D
}

(3.9)

After the decomposition, for given threshold ε > 0 which sets to have the consecu-

tive maximal sifting proceses ceased at the first N such that

∥RN∥2 ≤ ε, (3.10)
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the approximation of the original signal by the summation of the first N mono-components

is [30]

G(z)≈
N

∑
n=1

(
a−|an|2

)
Gn(an)

1−ane jt

n−1

∏
l=1

e jt−al

1−ane jt . (3.11)

By using Eq. (3.2), its corresponding function in the L2(∂D) space can be shown as [30]

s(e jt) = 2Re
N

∑
n=1

(
a−|an|2

)
Gn(an)

1−ane jt

n−1

∏
l=1

e jt−al

1−ane jt − c0 (3.12)

From the algorithm, we can see that there is a very large difference between the

AFD and traditional decomposition methods. The AFD decomposes signals according

to their energy distribution, making the AFD suitable for separating two parts whose

frequency ranges overlap each other.

3.3 EXAMPLES OF THE AFD

There are examples to show the characteristics of the AFD. The first example is

to show the principle of the AFD. The analyzed signal is shown in Eq. (3.13) where

z = e jωt and Fig. 3.2. The first six components after the decomposition of AFD is

shown in Fig. 3.3. It is difficult to see clearly the result of AFD only from Fig. 3.3.

There is a 3D view of the AFD result shown in Fig. 3.4 where the red wave is the

original signal.

Fig. 3.5 shows energy of mono-components. As the level n increase, the energy

reduces very fast. In other words, we can use very small components to reconstruct

original signal.

G(z) =
0.0247z4 +0.0355z3

(1−0.9048z)(1−0.3679z)
(3.13)
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Fig. 3.2 Real part of Eq. (3.13).

0 1 2 3 4 5 6
−2

0
2

t t co
m

po
ne

nt
1

0 1 2 3 4 5 6
−2

0
2

t t co
m

po
ne

nt
2

0 1 2 3 4 5 6
−0.2

0
0.2

t t co
m

po
ne

nt
3

0 1 2 3 4 5 6
−0.2

0
0.2

t t co
m

po
ne

nt
4

0 1 2 3 4 5 6
−0.1

0
0.1

t t co
m

po
ne

nt
5

0 1 2 3 4 5 6
−0.2

0
0.2

t t co
m

po
ne

nt
6

Fig. 3.3 Real part of first six components after AFD.
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Fig. 3.4 3D view of first ten AFD results.
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Fig. 3.5 Energy of mono-components.

To show the effective of the AFD in the denoising process, there are four special

waveforms: doppler, blocks, heavysine and bumps with additive Gaussian white noise.

Eq. (3.14), Eq. (3.15), Eq. (3.16) and Eq. (3.17) shows these four waveforms: doppler,

blocks, heavysine and bumps respectively [10]. For these four signals, the sampling

frequency is 2048Hz. SNRs of noisy signals are all 2dB. The wavelet transform and the

EMD are also used to do the denoising process of these four signals. The filter results

are shown in Table 3.1. From this table, it can be seen that the AFD mostly provides the
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best performance in these three methods.

f (t) =
√

t(1− t)sin
(

2π(1+ ε)
t + ε

)
, ε = 0.05 (3.14)

f (t) = ∑11
j=1 h jK(t− t j), K(t) = 1+sgn(t)

2 (3.15)

t j = (0.1,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76,0.78,0.81)

h j = (4,−5,3,−4,5,−4.2,2.1,4.3,−3.1,2.1,−4.2)

f (t) = 4sin(4πt)− sgn(t−0.3)− sgn(0.72− t) (3.16)

f (t) = ∑11
j=1 h jK(

t−t j
ω j

), K(t) = (1+ |t|)−4 (3.17)

t j = tBlocks

h j = (4,5,3,4,5,4.2,2.1,4.3,3.1,5.1,4.2)

ω j = (0.005,0.005,0.006,0.01,0.01,0.03,0.01,0.01,0.005,0.008,0.005)

Table 3.1 Denoising results of four special shape signals based on the AFD

Method
SNR of filtered result (dB)

Doppler Blocks Heavysine Bumps

Wavelet

transform
12.98 11.56 13.97 17.45

EMD 11.03 11.67 10.88 18.35

AFD 12.28 15.72 19.57 16.63
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CHAPTER IV DENOISING BASED ON THE AFD

4.1 TECHNIQUE OF THE DENOISING METHOD BASED ON THE AFD

Generally, a noisy ECG signal can be modeled as the summation of an ideal noise-

less signal f (t) and separate independent noise n(t) [11]:

fnoise(t) = f (t)+n(t). (4.1)

Although the noiseless signal is fixed from trial to trial, the noise term represents in-

trinsic variability, which may arise from a number of separate sources. In addition, Eq.

(4.1) is very similar with Eq. (3.1). According to the characteristic of the AFD, decom-

position components are distributed from high energy to low energy. Therefore, if the

energy of the noise is smaller than the energy of the pure signal, there should be a such

decomposition level N that the first N mono-components can be used to approximate

the pure signal. The approximation of the original signal can be expressed by

sr(t) = 2 Re
{

G̃
}
−
⟨
G1,e{a1}

⟩
(4.2)

where

G̃(t) =
N

∑
n=1

⟨
Gn,e{an}

⟩
Bn(e jt). (4.3)

The technique of the denoising process based on the AFD is similar with the wavelet

transform and the EMD. First, the AFD decompose signals to mono-components. Then

some mono-components that contains original pure signals’ components are filtered out

to reconstruct the pure signals. The only difference is that the AFD has a very rigor-

ous mathematical foundation. It decomposes signals based on their energy distribution.

Therefore, mono-components are obtained from high energy to low energy one by one.

Thus, the judgment of which mono-components should be selected to reconstruct pure

signals can be the decomposition level N. If the threshold decomposition level is de-

noted as ε , the process is shown in Fig. 4.1.
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Fig. 4.1 Denoising process based on the AFD with the threshold decomposition level ε .

However, most of the time, the threshold of the decomposition level N is still dif-

ficult to be determined. Therefore, I propose the AFD-based denoising method based

on a judgment based on the estimated signal-to-noise ratio (SNR). It is able to stop

the recursive AFD process automatically to get the denoising result and the suitable de-

composition level. This judgment is defined by SNR in decibel. The definition of the

SNR is shown in Eq. (4.4). If SNRe denotes the estimated SNR of the noisy signal

s(t), Eq. (4.5) can be used to show the energy relationship between the noisy signal

w(t) and the pure signal sp(t). For the ideal situation that all noise is in the remainder,

the reconstructed signal sr(t) will only contain the original signal. In other words, the

energy of sr(t) will be equal to the energy of the original signal sp(t) in the ideal case.

According to Eq. (3.2) and Eq. (3.8), we can use Eq. (4.6) to express the energy of the

reconstructed signal. Combining Eq. (4.5) and Eq. (4.6), in the ideal case, the energy

relationship between the noisy signal and the reconstructed signal can be expressed in

Eq. (4.7) which can be used to be the judgment.

SNR = 10log10

∥∥sp(t)
∥∥2

∥w(t)∥2 (4.4)
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∥s(t)∥2∥∥sp(t)
∥∥2 = 1+

1
10SNRe/10 (4.5)

∥sr(t)∥2 = 2
N

∑
n=1

∣∣⟨Gn,e{an}
⟩∣∣2− ∣∣⟨G1,e{a1}

⟩∣∣2 (4.6)

∥s(t)∥2

2∑N
n=1

∣∣⟨Gn,e{an}
⟩∣∣2− ∣∣⟨G1,e{a1}

⟩∣∣2 = 1+
1

10SNRe/10 (4.7)

4.2 IMPLEMENTATION OF THE DENOISING METHOD BASED ON THE AFD

In practice, Eq. (4.7) is difficult to be achieved. To make this judgment practical, it

is necessary to find the relationship between decomposition level N and the energy of

the reconstructed signal. The standard remainder RN(t) in Eq. (3.1) has a characteristic

[28]:

∥RN∥ ≤
M√
N

(4.8)

where M is defined by ∑∞
k=1 |ck| ≤M. As the decomposition level N increases, the en-

ergy of the standard remainder RN(t) decreases. Combining Eq. (3.8) and Eq. (4.7), it

can be seen that the energy of the reconstructed signal sr(t) increases as the decomposi-

tion level N increases. Therefore, before getting the threshold N that is able to make Eq.

(4.7) successful, the ratio of the the noisy signal’s energy ∥s(t)∥2 to the reconstructed

signal’s energy 2∑N
n=1

∣∣⟨Gn,e{an}
⟩∣∣2− ∣∣⟨G1,e{a1}

⟩∣∣2 will be larger than the ideal energy

ratio 1+ 1
10SNRe/10 . Therefore, Eq. (4.9) can be used to determine if the denoising pro-

cess can be finished in real situation. When the AFD is used to decompose a signal, all

mono-components are found from n = 1 to N one by one. Once Eq. (4.9) is reached, the

decomposition process should be stopped. If the decomposition process is continued,

more noise will be included into sr(t). If the decomposition process is stopped before

Eq. (4.9) is reached, more energy of the original signal will be lost from sr(t).

∥s(t)∥2

2∑N
n=1

∣∣⟨Gn,e{an}
⟩∣∣2− ∣∣⟨G1,e{a1}

⟩∣∣2 ≤ 1+
1

10SNRe/10 (4.9)

For the program of the denoising method, Two set of data should be inputted: the

noisy signal data and its corresponding estimated SNR. Then according to this estimated

SNR, the ideal energy ratio 1+ 1
10SNRe/10 can be obtained. Then when the recursive AFD
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process is running, the energy ratio ∥s(t)∥2

2∑N
n=1|⟨Gn,e{an}⟩|

2−
∣∣∣⟨G1,e{a1}

⟩∣∣∣2 of every decomposi-

tion level should be checked. Whenever the energy ratio is larger than idea energy ratio,

the AFD process will be stopped. The filtered results should be reconstructed by all

obtained mono-components. This total process is shown in Fig. 4.2. The program flow

chart is shown in Algorithm 1.

Fig. 4.2 Flow chart of the denoising method based on the AFD.
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Algorithm 1 Denoising procedure based on the AFD

Input: s(t): noisy ECG signal; SNRe: estimated SNR of s(t)

1: Initialize a1 = 0, N = 1 and G(t) = G1(t) = s(t);

2: e{a1} and B1←
√

1−|a1|2
1−a1e jt ;

3: G2←
(
G(t)−

⟨
G1,e{a1}

⟩
e{a1}

) 1−a1e jt

e jt−a1
;

4: a2← arg max

{∣∣∣∣⟨G2,

√
1−|a2|2

1−a2e jt

⟩∣∣∣∣2 : a2 ∈ D

}
;

5: e{a2}←
√

1−|a2|2
1−a2e jt ;

6: B2←
√

1−|a2|2
1−a2e jt

e jt−a1√
1−|a1|2

B1;

7: Let N = 2;

8: ER← ∥s(t)∥2

2∑2
n=1|⟨Gn,e{an}⟩|

2−
∣∣∣⟨G1,e{a1}

⟩∣∣∣2 ;

9: while ER > 1+ 1
10SNRe/10 do

10: GN+1←
(
GN(t)−

⟨
GN ,e{aN}

⟩
e{aN}

) 1−aNe jt

e jt−aN
;

11: aN+1← arg max

{∣∣∣∣⟨GN+1,

√
1−|aN+1|2

1−aN+1e jt

⟩∣∣∣∣2 : aN+1 ∈ D

}
;

12: e{aN+1}←
√

1−|aN+1|2
1−aN+1e jt ;

13: BN+1←
√

1−|aN+1|2
1−aN+1e jt

e jt−aN√
1−|aN |2

BN ;

14: Let N = N +1;

15: ER← ∥s(t)∥2

2∑N
n=1|⟨Gn,e{an}⟩|

2−
∣∣∣⟨G1,e{a1}

⟩∣∣∣2 ;

16: end while

17: sr← 2 Re
{

∑N
n=1

⟨
Gn,e{an}

⟩
Bn

}
−
⟨
G1,e{a1}

⟩
;

Output: sr: reconstructed filtered result; N: final decomposition level
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CHAPTER V SIMULATION RESULTS

This part is used to verify the Algorithm 1 and show the effect of the Algorithm 1

for the ECG denoising. Simulations are carried out in the MATLAB software. In these

simulations, two types of ECG signals are used: a artificial ECG signals and real ECG

signals. The artificial ECG signal generated by a ECG model [22] is used to verify the

denoising principle shown in Chapter 4, while some real ECG signals from the MIT-BIH

Arrhythmia Database [14, 23] are used to compare filtered results using the AFD with

the ones using the Butterworth lowpass filter, the wavelet transform, the EMD and the

ensemble empirical mode decomposition (EEMD). The main AFD program is provided

by Qian, which can be found in [26]. For each type of signals, two types of noise is

added. First type of noise is the additive Gaussian white noise which is a basic type

of noise model. Second type of noise is a combination of two real noise records – the

muscle artifact record and the electrode motion record from the MIT-BIH Noise Stress

Test Database [14, 24].

5.1 ARTIFICIAL ECG SIGNAL

5.1.1 ADDITIVE GAUSSIAN WHITE NOISE

A synthetic ECG generator is used to provide the artificial ECG signal. Details of

this generator can be found in [22]. The sampling frequency is 256Hz. The heart rate

is 60 beats per minutes. Three seconds data points of the generated ECG signal are

used in this test. Additive Gaussian white noise is added to the signal resulting in a

noisy signal with a 5.05dB SNR. The noisy signal is shown in Fig. 5.1. After using the

proposed denoising method, the reconstructed filtered result can be obtained. Fig. 5.2

shows the reconstructed ECG signal with first 14 mono-components (N = 14) against

the original ECG signal. Comparing these two signals shown in Fig. 5.2, we can see the

reconstructed signal almost reproduces the original ECG signal. In addition, the SNR

of the reconstructed signal is increased to 9.61dB, which represents the improvement of

4.56dB to the noisy signal.
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Fig. 5.1 Noisy artificial ECG signal with additive Gaussian white noise that makes SNR

5.05dB.
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Fig. 5.2 Original artificial ECG signal and filtered result for the additive Gaussian white

noise simulation.

In Fig. 5.3, the cross symbols and circle symbols show the relationship between the

ratio of the energy of the noisy signal ∥s(t)∥2 to the energy of the reconstructed signal

2∑N
n=1

∣∣⟨Gn,e{an}
⟩∣∣2− ∣∣⟨G1,e{a1}

⟩∣∣2 and the decomposition level N and the relation-

ship between the SNR of the reconstructed result and the decomposition level N. The

horizontal dashed line shows the ideal energy ratio 1+ 1
105.05/10 = 1.313. The vertical

dashed line shows the best decomposition level N = 14 that is obtained by the decom-

position process shown in Algorithm 1. According to Fig. 5.3, when the decomposition
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level increases, the energy ratio will decrease. In addition, the absolute value of the

slope of the energy ratio will also decrease. At N = 14, it is the first time that the energy

ratio is smaller than the ideal value. At the same time, the SNR of the reconstructed

ECG signal also gets its maximum point. These observations validate the proposed

denoising principle of the AFD.
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Fig. 5.3 Energy ratio of the noisy signals to the reconstructed ECG signal and SNR

of the reconstructed ECG signal for different N in the additive Gaussian white noise

simulation.

5.1.2 COMBINATION REAL NOISE

The noise combination method is same as [3]. Two real noise records are taken

from the MIT-BIH noise stress test database, the muscle artifact “ma” record and the

electrode motion “em” record. The baseline wander (BW) in each record is eliminated

by lowpass filtering. The total noise is

n(t) = k1nma(t)+ k2nem(t) (5.1)

where nma(t) and nem(t) are the “ma” and “em” BW free noise records, respectively [3].

Moreover, k1 and k2 are chosen to contribute with the same SNR0 [3]:

SNR0 =
∑L−1

t=0 x2(t)

∑L−1
t=0 [k1nma(t)]

2 =
∑L−1

t=0 x2(t)

∑L−1
t=0 [k1nem(t)]

2 . (5.2)

Fig. 5.4 shows the set of signals involved in this simulation of the artificial ECG sig-

nal. In Fig. 5.4(a), The first 2560 samples the artificial ECG signal. The configuration
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of this generator is the same as Section 5.1.1. The noisy signal is obtained by adding

the noise in Fig. 5.4(d) attaining an SNR of 14.88dB. The noise signal is obtained as

the summation of “ma” noise and “em” noise in Fig. 5.4(b) and Fig. 5.4(c), respec-

tively, at an SNR of 18dB in both cases. The noisy signal is shown in Fig. 5.5. After the

AFD-based denoising method, the reconstructed filtered result can be obtained. Fig. 5.6

shows the reconstructed ECG signal with first 65 mono-components (N = 65) against

the original clean ECG signal. Comparing these two signals shown in Fig. 5.6, it can be

seen that the reconstructed signal almost reproduces the original ECG signal. In addi-

tion, the SNR of the reconstructed signal is increased to 17.54dB, which represents the

improvement of 2.66dB to the noisy signal.
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(a) Original artificial ECG signal.
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(b) ‘ma’ noise at 18dB.
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(c) ‘em’ noise at 18dB.
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(d) Total noise at 14.88dB used to corrupt the original signal.

Fig. 5.4 Set of signals for artificial ECG signal simulation of the combination real noise.
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Fig. 5.5 Noisy artificial ECG signal with the combination real noise that makes SNR

14.88dB.
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Fig. 5.6 Original artificial ECG signal and filtered result for the combination real noise

simulation.

In Fig. 5.7, the cross symbol and circle symbol show the energy ratios of the en-

ergy of the noisy signals to the energy of the reconstructed filtered results and SNRs of

reconstructed filtered results for different decomposition level N respectively. The hori-

zontal dashed line shows the ideal energy ratio 1+ 1
1014.88/10 = 1.03. The vertical dashed

line shows the optimal decomposition level N = 65 at which the SNR of the filtered

result is maximum. According to Fig. 5.8, when the decomposition level increases, the

energy ratio will decrease. In addition, the absolute value of the slope of the energy

ratio will also decrease. At N = 65, it is the first time that the energy ratio is smaller

than the ideal energy ratio. At the same time, the SNR of the filtered result also gets its

maximum point. These observations validate the denoising principle of the AFD-based

denoising method. Moreover, It shows that the AFD-based denoising method and the

estimated-SNR-based judgment are able to be used to do real ECG noise reduction.
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Fig. 5.7 Energy ratio of the noisy signal to the reconstructed ECG signal and SNR of

the reconstructed ECG signal for different N in the combination real noise simulation.

5.2 REAL ECG SIGNALS

5.2.1 ADDITIVE GAUSSIAN WHITE NOISE

To evaluate the proposed denosing method, four records from the MIT-BIH Arrhyth-

mia Database, 100, 103, 105 and 119 are used. They were added Gaussian white noise,

resulting in noisy signals with SNR ranging from 2dB to 15dB. For each SNR of the

noisy signal, 50 independent runs are performed to get an average SNR of the recon-

structed filtered signal. Results are shown in Fig. 5.8. We can see that the proposed

denoising method is able to improve the SNR of the noisy ECG signal.
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Fig. 5.8 Improved SNRs of the filtered signals and corresponding SNRs of the noisy

signals for four real signal records: 100, 103, 105 and 119 with additive Gaussian noise.
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Fig. 5.9 Recod 103 signal with additive Gaussian white noise that makes the SNR 10dB.
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Fig. 5.10 Original record 103 signal and reconstructed filtered result for the additive

Gaussian white noise simulation.

We use three other denoising methods to compare with this proposed denoising

method. Three methods are based on the wavelet transform, the EMD and the EEMD.

First, the filtered results based on the wavelet transform from [12] are used to compare

with the filtered results based on the AFD. In [12], the record 103 signal from the MIT-

BIH Arrhythmia Database with additive Gaussian white noise is used. The same signal

and the same type of noise were used in this test. Fig. 5.9 shows the noisy record 103

signal with additive Gaussian white noise that makes the SNR 10dB. After using the

proposed denoising method, the filtered result can be obtained. Fig. 5.10 shows the
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filtered result and the original record 103 signal. The filtered result almost reproduces

the original ECG signal. The compared results are shown in Table 5.1. It can be found

that the denoising method based on the AFD is able to provide best results for these

four SNRs of noisy signals when compared with filtered results based on the wavelet

transform.

Table 5.1 Performance (SNR) comparision between filtered results based on the wavelet

transform and the AFD for the additive Gaussian white noise simulation

SNR of the

noisy signal

(dB)

SNR of the filtered result (dB)

Wavelet transform

with DB4

Wavelet transform

with DB6
AFD

6.8 11.81 11.38 13.35

9.29 13.55 12.87 14.36

12.81 15.84 15.07 17.81

15.83 18.02 17.86 18.36
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Table 5.2 Performance (MSE) comparision between filtered results based on the EMD,

the EEMD and the AFD for the additive Gaussian white noise simulation

Record

No.

MSE of the filtered result

EMD EEMD AFD

101 126.9 97.4 38.24

102 83.3 60.0 51.11

103 189.4 147.0 85.07

104 151.6 109.5 97.03

105 180.6 128.1 79.72

106 245.6 192.5 155.01

107 771.7 574.9 702.14

108 103.2 76.9 33.40

109 237.2 179.7 142.60

201 67.1 38.6 35.33

202 131.3 76.3 34.67

203 279.7 206.5 623.88

205 72.5 55 33.95

207 129.7 99.9 59.06

208 361.2 232.0 262.60

209 140.3 103.3 63.10

Then filtered results of the method based on the EMD and the EEMD are used to

compare with filtered results of the method based on the AFD. Filtered results of the

method based on the EMD and the EEMD are from [8]. In [8], 16 records’ signals from

the MIT-BIH Arrhythmia Database with additive Gaussian white noise that makes SNR

10dB are used. We use same records’ signals and add the same type of noise to do this

simulation. Mean values of 50 runs’ results are shown in Table 5.2. For these ECG

signals, the method based on the AFD can provide best results most of the time when

compared with filtered results based on the EMD and the EEMD.
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5.2.2 COMBINATION REAL NOISE

To evaluate the performance of the proposed denoising method for real ECG noise,

real ECG signals from the MIT-BIH Arrhythmia Database with the combination of real

noise shown in Section 5.1.2 are used to do the simulations. Fig. 5.11 shows the noisy

record 103 signal with the combination of real noise that makes SNR 14dB. After using

the proposed AFD-based denoising method, the filtered result shown in Fig. 5.12 can

be obtained. Comparing the original record 103 signal and the filtered result shown in

Fig. 5.12, the filtered result almost reproduces the original ECG signal. The AFD-based

denoising method is able to improve the SNR of the noisy ECG signal.
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Fig. 5.11 Record 103 signal with combination real noise that makes the SNR 14dB.
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Fig. 5.12 Original 103 signal and reconstructed filtered result for the combination real

noise simulation.
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To show the effectiveness of the AFD-based denoising method for real ECG noise

reduction, three other denoising methods are used to compare with this AFD-based

denoising method. These three methods are based on the Butterworth lowpass filter,

the wavelet decomposition and the EMD. Their results are from [3]. In [3], 5 records’

real ECG signals from the MIT-BIH Arrhythmia Database with the combination of real

noise that makes SNR 6dB, 10dB and 14dB are used. We use the same records’ signals

and add the same type of noise to do this simulation. The comparing results are shown in

Table 5.3 where SNRemd, SNRbutt, SNRwt and SNRAFD denote the SNRs of the filtered

results based on the EMD, the Butterworth lowpass filter, the wavelet transform and

the AFD, respectively. It shows that the AFD-based denoising method almost performs

better than the denoising method based on the EMD and the wavelet transform.

Table 5.3 Performance (SNR) comparison between filtered results based on the EMD,

the wavelet transform and the AFD for the combination real noise simulation

Record

No.

SNR = 6dB SNR = 10dB

SNRemd SNRbutt SNRwt SNRAFD SNRemd SNRbutt SNRwt SNRAFD

100 11.40 5.22 6.14 9.55 13.95 7.33 10.15 13.44

103 9.85 3.58 6.15 10.34 12.90 4.92 10.16 13.43

105 9.62 5.53 6.14 10.88 11.94 7.89 10.14 12.76

119 11.45 6.48 6.14 10.81 14.71 9.63 10.14 14.75

213 8.87 4.45 6.13 7.96 11.89 10.14 10.13 12.00

Record

No.

SNR = 14dB

SNRemd SNRbutt SNRwt SNRAFD

100 16.75 8.58 14.17 16.41

103 15.70 5.59 14.18 16.37

105 14.54 9.37 14.13 16.28

119 17.29 12.03 14.15 17.81

213 14.74 7.06 14.13 14.74

5.3 DISCUSSION

Normally, the proposed AFD-based denoising method shown in Algorithm 1 pro-

vides the optimal decomposition level N. In simulations of real ECG signals, some-
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times, the optimal decomposition level N and provided N are not same. However, it is

not a serious problem for ECG denoising. According to the relationship between the

energy ratio and the decomposition level N shown in Fig. 5.3 and Fig. 5.7, if the op-

timal decomposition level N and the provided N are large enough, and their difference

is not very large, the performances of filter results of these two cases should almost

be same. For additive Gaussian white noise, Table 5.4 shows the differences between

the optimal decomposition level N and the provided decomposition level N and the

differences between performances under these two kinds of decomposition levels. For

combination real noise, Table 5.5 where SNRse is the provided decomposition levels

of the Algorithm 1, SNRop is the optimal decomposition level, and SNRdiff is the dif-

ference between SNRse and SNRop shows the differences between performances under

these two kinds of decomposition levels. From these two tables, it is easily found that

whether the the differences between the optimal decomposition level N and the provided

decomposition level N or the differences between performances under these two kinds

of decomposition levels are not very large.

Table 5.4 Performance (MSE) under different decomposition level N for additive Gaus-

sian white noise

Record

No.
Selected N

MSE under

selected N
Optimal N

MSE under

optimal N

101 94 35.27 97 34.96

105 83 75.75 85 71.08

205 103 33.20 106 32.22

207 44 52.72 48 47.73
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Table 5.5 Performance (SNR) under different decomposition level N for the combina-

tion real noise

Record

No.

SNR = 6dB SNR = 10dB SNR = 14dB

SNRse SNRop SNRdiff SNRse SNRop SNRdiff SNRse SNRop SNRdiff

100 9.55 10.12 0.57 13.44 13.56 0.12 16.41 16.99 0.58

103 10.34 11.20 0.86 13.43 13.75 0.32 16.37 17.08 0.71

105 10.88 10.89 0.01 12.76 13.16 0.40 16.28 16.93 0.65

119 10.81 11.44 0.63 14.75 14.77 0.02 17.81 18.05 0.24

213 7.96 8.82 0.86 12.00 12.69 0.69 14.74 15.67 0.93

To obtain optimal results, sometimes we still need to adjust the decomposition level

after the proposed denoising process. According to these simulations, two basic rules

about how to adjust the threshold of the AFD can be found. According to [28], there is

a relationship between the threshold N and stander remainder RN :

∥RN∥ ≤
M√
N
. (5.3)

As the threshold N increased, the stander remainder RN will be decreased. And the

decay rate is the negative root of the threshold N. When N is small, RN will decreased

very fast. From Eq. (3.1) and Eq. (3.6), the relationship between n-th mono-component

and n-th stander remainder RN can be found easily:

∥Gn(t)∥2 = ∥RN∥2−∥RN+1∥2 . (5.4)

Combining Eq. (5.3) and Eq. (5.4), we can obtain

∥Gn(t)∥2 ≤M2
(

1
N
− 1

N +1

)
. (5.5)

Since N only can be positive integer, the energy of n-th mono-component Gn(t) is de-

creased as the threshold number N increased. In other words, if first N mono-components

are used to recovery the pure signal as shown in Eq. (4.2), this process is like a “high

energy filter”. It will make sure that high energy components will be decomposed first

from the noisy signal and added to the recovered signal. It implies two points: if we

want to recover more energy, the threshold N needs to be increased; if the energy of

noise is larger than that of the pure signal, it is difficult to recovery the pure signal from

the noisy signal. From these two points, the first rule can be obtained:
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When the signal-to-noise ration (SNR) of the noisy signal is positive, for the noisy

signal which has larger SNR, the larger threshold N is needed to filter most noise from

the noisy signal.

The second rule is related to global frequencies of mono-components. The AFD

is a kind of adaptive decomposition method. It is able to show the time-frequency

distribution of a signal. As Eq. (3.4) shows, for different time, mono-components

may have different instantaneous frequencies. Therefore, it is difficult to determine the

frequency relationship between two mono-components. However, it is easily shown that

by writing Bn(e jt) as Eq. (3.4), there follows

ϕ ′n(t)< ϕ ′n+1(t), t ∈ [0,2π] . (5.6)

According to this characteristic of Bn(e jt), There still is a relationship related to the

main frequency range between two mono-components: As the number n increased,

the main frequency range of the mono-component sn(t) will also increased. From this

relationship, it can be found easily that the denoise process will look like a low pass

filter if first N mono-components of the AFD are used to recovery the original pure

signal. Then the second rule can be obtained:

When the SNR of the noisy signal is positive, for the noisy signal which contains

higher frequency components, the larger threshold N is needed to filter most noise from

the noisy signal.

Since single sinusoidal signals are easily used to show the frequency relationship,

this type of signals is chosen to verify these two rules. The original signals f (t)’s are

single sinusoidal signals which don’t have phase difference and whose frequencies are

from 2Hz to 20Hz. SNRs of noisy signals fnoise(t) are from −20dB to 20dB after

additive Gaussian white noise is added into the original signals f (t)’s. The AFD is

used to decompose every noisy signal. For every decomposition level, the SNR of the

reconstructed signal is calculated to find the optimal decomposition level. For every

pair of fnoise(t) and f (t), this kind of simulation will repeat 50 times to get the mean

value of the these 50 optimal decomposition level N. The simulation result is shown in

Fig. 5.13. From Fig. 5.13, the relationship between the optimal decomposition level N,

the frequency of original signal and the SNR of the noisy signal is shown very clearly,

which satisfy these two rules
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Fig. 5.13 Optimal decomposition levels for different frequencies of original single sinu-

soidal signals and SNRs of noisy signals.

Although the AFD-based denoising method mostly can provide best filtered results

in Table 5.2 and Table 5.3, sometimes, the filtered results of the EMD or the EEMD are

better than the ones of the AFD. These special cases can be separated to two situations.

For the first situation, the best filtered results are much better than the filtered result of

the proposed method, i.e., the filtered results of the record 203 ECG signal shown in

Table 5.2. The main reason that the filtered results of the proposed denoising method

is not best in this situation is the limitation of the AFD for analyzing complex signals.

Fig. 5.14 shows first ten seconds’ record 203 ECG signal. It can be seen that this ECG

signal contains too much small high frequency components. If this signal is considered

as the original signal to let the AFD reconstruct it, the decomposition level needs to be

more than 200, which cost large computation time and resources. In Table 5.2, to save

simulation time, the maximum decomposition level is limited to 200. Although the final

optimal filtered result of the proposed denoising method is better than the filter result

based on the EEMD if the maximum decomposition level don’t have any limitation, the

performance of the proposed denoising method is still not good by considering the cost

of the time and resources. This problem is mainly from the computation method and

the program of the AFD. In the future, after optimizing the computation method and the

program of the AFD, this problem may be able to be solved.
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Fig. 5.14 Record 203 ECG signal

For other special cases, they mainly belong to the second situation. the problem of

this situation is mainly because the limitation of the denoising process. In this proposed

denoising method, one estimated SNR is used to calculate the judgment. In other words,

it assumes that the SNR is same in the whole data set. However, it is not true. the es-

timate SNR only shows an average value of the whole noisy signal. For ECG signals,

most of the time, the actual SNRs of different parts are almost same as the average esti-

mated SNR. Therefore, the proposed denoising method mostly perform better than other

methods. However, sometimes, there are large differences between the actual SNRs and

the estimated SNR. Then the performance of this AFD-based denoising method is re-

duced in this situation. For the EMD and the EEMD, they use windows to separate and

protect different parts of ECG signals as shown in Section 2.3.3. Therefore, they don’t

have this problem. In the future, this protection window method may be also added into

the AFD-based denoising method to solve this problem.
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CHAPTER VI CONCLUSION AND RECOMMENDATIONS FOR FUTURE

RESEARCH

In this report, a denoising process based on the AFD for ECG signals is presented.

The AFD mainly has two characteristics. First, it decomposes signals based on their

energy distribution, which makes its convergence property good and make its decompo-

sition components distribute from high energy to low energy. Second, its decomposition

components are all mono-components whose phase derivatives are always positive. Ac-

cording to these characteristics, the AFD is suitable for the ECG signal denoising. To

make this method practical in denoising process, a judgment is defined to determine if

enough decomposition components have been obtained in the recursive AFD process

to reconstruct filtered results. Based on this judgment, a AFD-based denoising method

is proposed. To verify and demonstrate the effectiveness of this AFD-based denoising

method, the artificial ECG signal and real ECG signals with additive Gaussian white

noise, muscle artifact and electrode motion artifact are used to do simulations.From

their simulation results, the proposed denoising method mostly can provide best per-

formances when compared with denoising methods based on the butterworth lowpass

filter, wavelet transform, the EMD and the EEMD, showing that the AFD is a promising

tool for ECG signal denoising.

For the proposed denoising method based on the AFD, it is mainly related with the

energy distribution of mono-components. In other words, there are still many charac-

teristics of the AFD that have not been used. For the energy related characteristic, the

AFD converges very fast. According to this property, the AFD may be able to be used

to compress signals and images. Until now, the popular compressing technique is to

use the Fourier transform, filter out high frequency components and keep Fourier se-

rious of low frequencies. This compressing method not only damage lots of original

signals but also still need to store a large data of Fourier serious. For the AFD, since

it converges fast. Few components may be enough to present a very long signal or a

very large image. Therefore, in the signal or imaging compressing area, the AFD may

be also a promising tool. For another characteristic of the AFD, its mono-components

only contain positive phase derivatives. This characteristics may be able to be used to
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analysis the instantaneous frequency. The instantaneous frequency is very important for

many fields. Getting a high resolution instantaneous frequency means that we can get

accurate frequency information in a small time period. It will make the response time

of many devices short and the running speed fast. For example, the main technique of

the SSVEP control is the frequency analysis based on the Fourier transform. However,

to get a accurate frequency information, the Fourier transform needs a very long data

set. To catch this data set, the control process cost long time. Therefore, if the AFD can

short the data collecting and analysis time, the SSVEP control will become fast. Even

the instantaneous SSVEP control may also can be implemented. In summary, Many

useful and powerful characteristics of the AFD have not been used. The AFD has a

promising developing future.
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