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Abstract 

We present a dynamic stochastic programming model to manage future contracts in 

Chinese commodity future markets. We simulate the uncertainty in asset prices by 

means of the scenario trees that approximate the empirical joint distributions implied 

by historical market data. We firstly propose an improved algorithm that generates a 

discrete joint distribution consistent with the first four marginal moments and 

correlation matrix of random variables. We point out that algebra modeling language 

and our moment matching algorithm make it possible for any non-specialist users to 

build models in order to solve complex sequential decision making problems. 

Secondly, we propose a stochastic programming model for managing the futures 

contract. Empirical results based on the Chinese commodity futures contracts 

compare the performance of our proposed model with those of other popular trading 

strategies presented in finance literature. We also show that the multi-stage model 

outperforms single-stage models in terms of the stability of return series generated.   

Keywords: Stochastic programming; Risk managements; Chinese future contracts; 

Scenario generation. 
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I. Introduction 

Mathematical Programming, or Mathematical Optimization is a branch of quantitative 

methods exploring optimal ways to achieve a certain objective when facing with 

constraints. Normally, it solves problems that maximizing or minimizing a utility 

function that related to decision variables while subjected to several constraints. In 

financial industry, a typical problem that studying on how to allocate the portfolios to 

reduce the risk while maintain a certain level of expected return can be well solved by 

an optimization model. In the traditional mathematical model, all input parameters are 

constants. However, we are always facing uncertainties in the real market. When the 

uncertainties of the parameters are incorporated into a mathematical programming 

model, the model could be considered as a stochastic programming one. The 

uncertainties in the model are presented by their joint distributions and stochastic 

process for the single- and multiple-period models respectively. 

Optimization techniques are now one of the most widely used quantitative approaches 

in decision analysis in many areas. Research topics ranging from agriculture to 

economics, from engineering to operational scheduling can be solved efficiently by 

mathematical optimization models. With the rapid development of computer 

technology, financial practitioners both from academic institutes and industry started 

to explore the effect of stochastic programming models in financial markets. Ziemba 

(2003) pointed out that risks are well diversified and the extreme scenarios are taken 

into consideration in the stochastic programming models. Thus the value of portfolios 

are well protected from unpredicted outcomes in the extreme cases while the models 

were also demonstrated to have good performances in normal times. To explore the 

effect of stochastic programming model in international portfolio managements with 

multi-currency and bonds, Topaloglou, Vladimiro and Zenios(2006)'s model showed 

that the approach is a flexible and effective tools in the international markets. 

Kouwenberg (2001) proposed a asset liability management optimization model for a 

Dutch pension fund. Their study showed that an appropriate scenario generation 

method is critical in the stochastic programming model. The performance could be 

improved significantly if an appropriate method is applied. 
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Meanwhile, financial practitioners found it difficult to handle and implement 

stochastic models in financial markets. The challenge of a stochastic programming 

model is twofold: 1). generate scenarios as the input of the stochastic programming 

model, as most of the input variables in the financial markets are uncertain. 2). build 

and solve the model. The mathematical algorithms involved to solve a stochastic 

model is very complicated, in this paper, we rely on commercial statistical software 

and solvers to tackle these difficulties.  We show that computer software enable 

non-specialist to build their own models and get the optimal solutions efficiently. 

Scenario generation plays an essential role in the stochastic programming model. Kaut 

and Wallace (2003) provided several scenario generation approach and discussed on 

the evaluation of the suitable methods for any given cases. A moment-matching 

method proposed by Høyland and Kaut (2002) is suitable if we do not know the 

distribution function of the marginal. The solution was also applied by Yin and Han 

(2013) who developed a multiple stages stochastic programming model to apply 

options to hedge the risk in international portfolio risk managements. 

Moment-matching solution is employed in our scenario trees’ construction. The 

procedure allows for distributions of different types and various realistic constraints. 

However, we found that the moment-matching algorithm may show significant 

deviations if the scenario sample is not sufficient. We made a slight modification on 

the algorithm so that the method would produce well-matched statistical properties 

regardless of the sample size. We developed a fully-automated SAS program to 

implement this scenario generation method. 

We also noticed that although stochastic programming models have been 

implemented and tested in many financial areas, commodity future markets has not 

drawn much of the attention from stochastic programming modelers. Considering the 

transaction cost are significant lower and the justifiability of short position takings in 

future market, it is realistic that we can implement a stochastic programming model 

which re-balance the portfolio in every decision-making points. We developed a 

stochastic programming model in Chinese Commodity futures markets and showed 

that stochastic programming is a powerful analytical method to make sequential 
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portfolio management decisions under uncertainty in these markets.  

Financial activities always involve risk. Futures are extreme risky as they are always 

traded with margin. Trading rules in future market allows investors to purchase 100% 

of the contract value by depositing only 5-20% down in the margin account. Thus, 

each margin account covers only 5-20% of the values for underlying assets.  

Depending on the margin ratio, futures trading can give investors 5 to 20 times 

leverage. Leverage is a great thing when price movement of underlying asset is in the 

investors' favor. However, when the price movement is in an unexpected way, 

investors would experience leveraged losses. Apparently risk management is one of 

the most concerned topics in future markets. In our model, conditional value-at-risk 

(CVaR) was applied as the risk measure, which often used to reduce the probability a 

portfolio will incur large losses. Several advantages of conditional value-at-risk 

(CVaR) are mentioned by Rockafellar and Uryasev (2002).  As a risk indicator, 

CVaR shows significant advantage over value-at-risk(VaR) as CVaR is able to capture 

excess losses beyond VaR. CVaR is also designed to measure the discrete loss 

distribution and make the large-scale problems practically and effectively calculated. 

An example was provided to illustrate the numerical efficiency and stability of CVaR 

in this paper. Mathematically speaking, CVaR is derived by taking a weighted average 

between the value at risk and losses exceeding the value at risk. With these 

advantages, CVaR is employed as the risk indicator and minimized in the end of 

planning horizon in our model. 

To be summarized, this paper provides a stochastic programming model implemented 

in Chinese Commodity future markets and shows that the approach is an effective 

way to manage commodity futures. CVaR is employed in the objective function to 

minimize the expected losses in the extreme cases. We also develop automated 

computer programs to conduct scenario generation process and solve the models. 

This paper is presented with following structure. In Section 2 we introduce the 

problems we are exploring and the modeling approaches. Section 3 explains the future 

contract return series construction and scenario tree that was used as the input to 

represent the uncertainty in the single- and multi-stage future contracts management 
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optimization model. We further provide our scenario generation algorithm which is 

fully automated in SAS. In section 4 we create the single- and multi period stochastic 

programming models in future markets and examine its key features. The model is 

then solved by CPLEX in AMPL. The results and findings of the model are discussed 

in Section 5. Section 6 concludes the paper and points out the questions remaining for 

further studies. 
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II. Problem description and modeling approach 

We look into a problem of an investor who is concerned with the dynamic 

management of future contracts in China commodity future markets in 18-month 

planning horizon. The investor would like to generate a certain amount of profit while 

control the downside risk exposure. Initially the investor starts with a certain amount 

of cash and has full understanding of price information in the history. He assesses 

movements of the market price based on historical information and decides the 

portfolio composition to maximize his utilities. At next decision period, the investor 

rebalances the portfolio to response the new information that revealed in the last 

periodic intervals. This problem has a dynamic structure, as the investor would close 

out all positions and re-allocate the funds in the future markets. The rebalancing 

decisions are realized by a sequence of long and short of future contracts in the 

markets.  

The investor's perception of market price movements are described as the joint 

distribution of the historical prices movements, which are used to project the 

uncertain price movements in the future. The projected price movements are 

represented as a scenario three, which is served as the key decision-making basis of 

the future investor. In each decision period, the investor re-construct a portfolio to 

maximize his utilities based on the projected outcome in the scenario trees. Here, the 

utility indicates the CVaR of portfolio, which is generally used to describe the 

expected large losses beyond VaR at the end of planning horizon. The reason we 

choose this risk measure is that use CVaR in the objective function enables us to 

effectively control the downside risk, which is often encountered by future market 

investors. 

The financial decision-making problems we discussed above could be well modeled 

as a stochastic programming model. Stochastic programming assumes that the 

uncertain parameters are random variables with known probability distributions. This 

information is then used to transform the stochastic program into a so-called 

deterministic equivalent which might be a linear program or a nonlinear program. The 
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randomness of input parameters in the model are represented by a discrete scenario 

tree which depict the joint distribution and stochastic process of price movements. As 

we indicate below, the return of commodities are asymmetric and fat-tailed. The 

marginal distribution (mean, variance, skewness and kurtosis) and correlation matrix 

are captured and simulated by a moment-matching technique proposed by Høyland 

and Kaut (2002), which are not restricted to any particular distributional assumptions. 

This flexibility in scenario generation and representing the uncertainties of input 

parameters is definitely one of the major advantage of stochastic programming 

approach. 

In additional, stochastic programming enables the model to accommodate different 

utility objective to capture the investor’s risk bearing preference. CVaR which 

quantifies the large losses in extreme cases, can be expressed by a simple formula and 

readily be incorporated into our stochastic programming model. The formula makes 

CVaR practical and effectively dealing with risks. 

Commercial computational and statistical software play crucial roles in the solution of 

our stochastic model. An iterative algorithm is applied to conduct moment-matching 

techniques in the scenario tree generation process. The whole process is realized by a 

fully-automated SAS project, which takes approximately 45 minutes to generate a 

scenario tree with two-stages and 150x100 scenarios in a personal computer. The 

algorithm involved to solve a stochastic programming model is extremely 

complicated. However, our model can be solved effectively by commercial solvers in 

AMPL.    

Both single- and multi-stage models are adopted in the Chinese future contract 

management problem. Multi-stage model captures long tern price movement and help 

investors to make decisions under long term market conditions and avoid myopic 

reaction to short-term market fluctuations that might show risky. These advantages of 

multi-stage model will be shown in the comparison of single and multi-stage models. 

All of models and trading strategies are implemented in the real future contract data in 

the Chinese future markets, we further compare the performance of our model in 

18-month horizon with the returns generated by the trend following strategies which 
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provided by Szakmary, Shen and Sharma (2010) and show that our model generates a 

much more stable and reliable positive return series.  
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III. Return Series and Scenario Tree Construction 

1) Return Series 

Comparing with the future markets in eastern countries, Chinese commodity future 

markets can only be viewed as a rising industry. We extract daily settlement price for 

15 futures which are currently actively traded in Chinese commodity future markets 

and covering trading period longer than 6 years. The statistical properties that 

evaluated from historical data are expected to be an accurate and stable estimation of 

the true values if the sample size is sufficient. The futures in our study are traded on 

three different exchanges, where the underlying assets are all single deliverable 

commodities. To obtain infinite daily price series, or equivalently, daily return series, 

we follow the procedures proposed by Szakmary, Shen and Sharma (2010). For each 

commodity future, before the month of contract expiration, current contract is rolled 

over to the next contract on the last trading day. Meanwhile, during the contract roll 

over, the return are always calculated from the data in the same contract. Thus price 

both from the current and next contract are extracted on the roll-over days. And to 

build a daily price value index, initial price value of each commodity is set to be 1, 

price values in the subsequent periods are derived by multiplying the price value in 

the previous period with the return.  

We convert the daily series to a monthly frequency by extracting the price index on 

the lasting trading day of each month. Table 1 lists the 15 individual commodity 

futures and their general information including exchanges, start dates, transaction cost, 

margin percentage and contract size. Meanwhile, the summary statistics and the result 

of normality tests of the monthly return series are provided in Table 1 as well. 

The 15 individual commodity futures included in our study covers products from 

different industries, including agriculture, industrial, metal and energy. The summary 

statistics listed in Table 1. show there are significant differences in the central location 

and volatility in the returns across the 15 commodities. The average monthly returns 

are ranging from -1.20% (Palm Oil) to 1.44% (No.2 Soy Bean), while standard       
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Note: 

1. Exchange: DCE is Dalian Commodity Exchange, ZCE is Zhengzhou Commodity Exchange and SHFE indicates Shanghai Futures Exchange.; 

2. Latest prices indicate the price on Sep 30, 2013 for the contracts that will expire in Oct/Nov 2013. 

3. Margin is the lowest amount, in terms of the percentage of contract value, on the last month before the contract expiration as required by the exchanges. 

4. Size is the deliverable quantity of underlying commodity in a future contract. 

5. Transaction cost is fees per contract that paid by the investors. 

6. Kolmogorov-Smirnov is a normality test in non-parametric way.  

  * indicates statistically significant at the 5% level. 

 ** indicates statistically significant at the 1% level. 

7. Average open interest/volume traded refer to daily average no. of contracts from Aug 30, 2013 to Sep 30, 2013 in the latest expired contracts.  

Table 1.

Market information and summary statistics

Start Latest Transaction

Commodity Exchange Date Price Margin Size Cost Mean(%) Std.Dev(%) Skew(%) Kurt(%) Kolmogorov-Smirnov Open Interest Volume Traded

CORN DCE 22Sep2004 2,363 10% 10 1.2 -0.60 2.79 -6            -58          0.052** 54                 12                 

LLDPE DCE 31Jul2007 11,005 10% 5 2.5 0.09 8.31 -190        1,009      0.106** 34                 9                  

NO.1 SOYBEAN DCE 15Mar2002 4,548 10% 10 2.0 0.02 4.59 -139        779         0.080** 61               10                
NO.2 SOYBEAN DCE 22Dec2004 4,122 10% 10 2.0 1.44 5.78 -102        564         0.108** 2                1                 

PALM OIL DCE 29Oct2007 5,056 10% 10 2.5 -1.20 6.89 -3            83           0.060** 1,004            14                 

SOYBEAN MEAL DCE 17Jul2000 3,933 10% 10 2.0 2.09 7.75 68           123         0.051** 1,075            447               

SOYBEAN OIL DCE 09Jan2006 6,882 10% 10 2.5 0.31 7.93 -9            151         0.106** 53                 9                  

ALUMINIUM SHFE 28Feb1994 14,430 15% 5 3.0 -0.51 4.45 30           243         0.096** 31,036          2,744            

COPPER SHFE 26May1993 52,730 15% 5 10.0 0.34 8.25 -151        732         0.073** 60,836        17,127         
FUEL OIL SHFE 24Aug2004 4,017 30% 50 1.0 -0.58 6.56 -101        326         0.085** 17               4                 

NATURAL RUBBER SHFE 27Jun1995 18,055 20% 10 4.0 0.32 8.32 -28          133         0.110** 464               72                 

ZINC SHFE 26Mar2007 14,810 15% 5 3.0 -0.80 8.20 -124        417         0.092** 13,396          1,918            

COTTON #1 ZCE 01Jun2004 20,330 25% 5 4.3 0.29 6.92 257         1,252      0.155** 3,421            226               

PTA ZCE 18Dec2006 7,670 15% 5 4.0 0.09 7.77 -51          315         0.076** 200               63                 

SUGAR ZCE 06Jan2006 5,341 15% 10 4.0 0.61 6.51 134         473         0.109** 3,204            287               

 Monthly return on long positions Avg. volume (no. of contracts)
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deviations are ranging from 2.8% to 8.3%. Although the commodities display different means and variances, the skewness and kurtosis suggest 

the commodities are asymmetry and fat tailed. The Kolmogorov-Smirnov test for null hypothesis that the return is normal distribution, suggests 

we can believe that among the 15 commodities, at least 10 return series are not normal distributed. The correlation matrix of the random 

variables over the period Apr 2007 - Sep 2013 are shown in Table 2. The observed correlations across different commodities are relatively low. 

Hence, total risk in the diversified commodity future portfolio can be well reduced. All these results suggest that moment-matching is a suitable 

solution for the scenario generation. Finally, we point out that the average trading volumes among the 15 selected show large variations, ranging 

from over 17,000 contracts traded per day in Copper down to 1 contract only in No. 2 Soybean. The low open interest and trading volume in 

Table 2. Pearson Correlation Matrix of monthly return of commodity futures over the period Apr 2007 - Sep 2013.

CORN LLDPE
NO.1

SOYBEAN
NO.2

SOYBEAN
PALM

OIL
SOYBEAN

MEAL
SOYBEAN

OIL
ALUMI

NIUM COPPER
FUEL

OIL
NATURAL

RUBBER ZINC
COTTON

#1 PTA SUGAR

CORN 1

LLDPE 0.00 1

NO.1 SOYBEAN 0.28 0.23 1

NO.2 SOYBEAN 0.34 0.38 0.66 1

PALM OIL 0.18 0.43 0.44 0.47 1

SOYBEAN MEAL 0.28 0.47 0.54 0.45 0.38 1

SOYBEAN OIL 0.06 0.45 0.53 0.53 0.65 0.37 1

ALUMINIUM 0.26 0.43 0.24 0.32 0.27 0.27 0.23 1

COPPER 0.22 0.67 0.23 0.44 0.44 0.36 0.42 0.72 1

FUEL OIL 0.25 0.49 0.35 0.50 0.44 0.30 0.29 0.29 0.46 1

NATURAL RUBBER 0.16 0.59 0.25 0.46 0.48 0.37 0.38 0.48 0.68 0.41 1

ZINC 0.13 0.71 0.27 0.41 0.46 0.34 0.47 0.60 0.80 0.34 0.56 1

COTTON #1 0.12 0.25 0.12 0.13 0.25 0.12 0.24 0.22 0.26 0.11 0.40 0.35 1

PTA 0.11 0.67 0.14 0.25 0.53 0.27 0.41 0.48 0.61 0.44 0.63 0.55 0.35 1

SUGAR 0.19 0.11 0.22 0.31 0.27 0.05 0.30 0.38 0.37 0.15 0.41 0.40 0.46 0.23 1
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some of these commodities suggest that our trading strategies may difficult to 

implement in real markets. However, since the markets are growing, it is still worth to 

test the efficacy of these strategies. 

Once we obtain the monthly basis return series, we are able to estimate the statistical 

properties which are served as inputs of scenario generation. In each period for 

portfolio re-balancing, based on the historical data in the past 5 years, we re-calculate 

the mean, variance, skewness and kurtosis for each commodity monthly return series 

and correlation matrix for these series. Then the 4 moments and correlation matrix are 

served as the key parameters to generate the price scenarios, which are used as the 

inputs to generate trading signals in the stochastic programming model. 

2) Scenario tree 

Quality of the solution obtained by solving a stochastic programming model highly 

depends on how well the uncertainty influencing the portfolio construction is 

represented. One of the major advantages of a stochastic programming model is that 

the input random variables are not restricted to a particular distribution assumption. 

The key input random variables that influenced decision problems are the price 

movements, or equivalently, the returns for each commodity. Discrete evolution of the 

price movements during the planning horizon could be modeled as a scenario tree 

which shown in Figure 1. The possible outcomes in a scenario tree are projected 

based on the statistical model that employed with historical market data as the input 

parameters, as well as the opinions of experts. 

Generally, a planning horizon is divided into T periods, each period is corresponding 

to a time which portfolio rebalance decisions are made. We use monthly trading 

period in our model. That means, the future portfolios are rebalanced every month. 

Starting from a root node in Period 0 which the investor has full knowledge of all 

realized market information, as well as a certain amount of funds in hand. That is, the 

input parameters in Period 0 are known with certainty. The investor's perception of 

uncertainties in the subsequent period are depicted as a tree which branches out from 

root node. The subsequent nodes in the tree represent possible outcomes in periods 

1,...,t T . Each node is associated with a unique predecessor. Random variables in 
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the nodes associated with a same predecessor follow a same joint conditional 

distribution. Parameters in the nodes emanating from same node are projected by 

same joint distribution with a statistical model. Each node in the end of planning 

horizon (terminal node) represents a scenario. Each scenario associated with a unique 

terminal node distinguished a unique evolution process of random variables. The 

terminal nodes are not necessary to be generated with same probability, and the tree 

does not need to be symmetric and binomial as well. The size of a multi-stage 

scenario tree grow substantially as trading periods and nodes increase.  

Figure 1. A typical scenario tree 

e 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We define below notations for the scenario tree: 

 is the set of nodes in the tree; N  
 is a typical node in in the tree, 0 reprenets the root node.n N n   

0 is the set of trading periods in the tree;  is the initial time.T t T  

 is the set of nodes in period 0,1,...  in the tree,  is the set of terminal nodes;t TN N t T N 
( )  is the unique predecessor node of node \{0};p n N n N   
 is the probability of state associated with node .np n  

As we mentioned above, the stochastic process of random variables are projected in 
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scenario trees. In each node 0\ \ Tn N n N  (intermediate nodes), portfolios are 

rebalanced based on the realized market information and the postulated outcomes that 

emanating from this node. The realization of random variables in the intermediate 

nodes are modeled by statistical solutions and experts' opinions. In the terminal nodes, 

we only calculate the value of portfolio based on the realized marketing information 

in the end of planning horizon. 

The statistical model that employed to project random variables in the intermediate 

nodes is critical in the construction of a scenario tree. We consider the movement of 

market prices in commodity future contracts, or equivalently the returns of these 

commodities in the scenario tree. The correlation matrix presented in Table 2 shows 

that the returns of commodities are correlated. Moreover, the Kolmogorov-Smirnov 

test results shown in Table 1. suggest that the random variables are generally not 

normal distributed. Rather than normal distributed, skewness and excess kurtosis are 

observed in the sample data. These statistical features of data should be fully captured 

in the representation of uncertainties in a scenario tree. Given the statistical 

characteristics we discussed above, the moment-matching technique which is suitable 

in this situation, is applied in our scenario generation process. 

Specifically, the first four moments and correlation matrix of the random variables are 

matched with the historical market data in our model. 

The first four moments are: 

 Mean: depicts the central location of a random variable. 

 Variance: measures the dispersion of a random variable. 

 skewness and kurtosis: measure the shape of a random variable's probability 

distribution. Specially, skewness describes the asymmetry about the mean of a 

random variable, while kurtosis indicates the "peakedness". 

We should point out that the four moments of random variables and their correlation 

matrix could not uniquely determine the joint distribution. That means, two different 

joint probability distribution functions could have same mean, variance, skewness, 

kurtosis and correlation matrix. However, statisticians suggest that first four moments 
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and correlation matrix are sufficient to represent the uncertainties of random 

variables. 

All random variables in nodes in each time period 1...t T  should follow a same 

joint distribution, which is modeled and generated by the moment-matching 

procedure. Size of the tree depends on the number of time period as well as number of 

realized outcomes(nodes) in each time period. Higher accuracy of the randomness is 

captured with more outcomes postulated in the scenario tree. However, the size of a 

scenario tree is increased exponentially with the increase of nodes in the intermediate 

periods. Our model presents in the later section is flexible to involve arbitrary number 

of decision periods. However, it is extremely time exhausting and high computational 

effort requirements to solve a large scale stochastic model. Generally, a large model is 

solved by professional computational machines. Due to system limitation, our model 

is applied in a single-stage and a two-stage case respectively. The models are then 

solved in a regular personal computer. 

The moment-matching procedures are initially provided by Kaut and Wallace (2003). 

To match statistical properties which calculated from the historical data, the procedure 

generally gives stable results in the case of large number of scenarios. However, if the 

postulated outcomes are small, say, 150 in the second stage, significant deviations are 

shown. To ensure a stable and well-matched outcome, we slightly modify the iterative 

algorithm that provided by Kaut and Wallace (2003). The improved solution provided 

a way to generated postulated outcomes with statistical properties well-matched with 

the historical data within a certain accuracy. Please refer to the Appendix for our 

modified algorithm. We should point out that the convergence issue of this iterative 

algorithm is complicated. Mathematically, we are not able to provide an analytical 

proof for the convergence. However, in the extensive experiments in the future return 

scenario generation, we never met an unsolvable case. The iterative process is 

fully-automated by a SAS project designed by us. The process will be stopped once 

the convergence criteria are achieved or a pre-specified number of iterations are 

performed. The project restarts the process in the cases of divergences. Empirical test 

suggests that the divergences will ultimately achieved with multiple experiments. We  



Page 17 of 35 
 

ensure that all scenario trees has well-matched statistical properties in our model. The 

major concern for the convergence is the performance of computer in the scenario 

generation but not the risk of using a tree with miss-matched properties. 

As the inputs for our stochastic programming model, we generate both single and 

two- stage scenario trees. At time period 0, we calculate the first four moments as well 

as the correlation matrix of commodity returns, which are served as the key 

parameters of our moment-matching procedure to generate outcomes in period 1 of 

the scenario tree. 10,000 scenarios are generated for the single-stage tree, while 150 

scenarios are projected for the two-stage tree. We generate scenarios incrementally in 

the two-stage case. For each node in period 1 of the two-stage tree, we re-calculate the 

statistical properties based on the projected parameters in the predecessor node as well 

as the realized market information in root node. A number of outcomes for the 

successors that matched the re-calculated statistical properties are further generated. 

Same procedures are applied in all of nodes in period 2 of the two-stage tree. We 

generate a two-stage tree with 150 100  scenarios. Without loss of generality, each 

scenario is generated with equal probability. 
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IV. Future contract management model 

Our model determines a sequence of investment decisions in Chinese commodity 

future markets. The decisions are made at discrete time point (monthly) in a given 

period. The problem is viewed as an investor who is interested in Chinese commodity 

future markets starting with an initial fund. In the initial period, the investor enters the 

future market by taking positions in commodity future contracts based on his 

perceptions of market movements. At the beginning of next period, the investor closes 

out all positions in the market and re-evaluates the market information. The investor 

then re-constructs a new portfolio with the newly realized information during 

previous periods. For every projected outcome in the intermediate nodes, the investor 

makes different decisions based on the realized return and considers the projected 

realization of future prices. The decision in each node affects the outcomes in its 

successive nodes. A sequence of decisions made in the intermediate period end up at a 

terminal node. The portfolio at a terminal node represents a possible realized outcome 

which is resulted by a series of decisions made by the investor during the planning 

horizon. A sequence of decisions during the period distinguishes a unique scenario, 

which result in a unique node in the terminal period. All of the postulated realization 

in terminal nodes formulate the sample of outcomes that resulted by the investor's 

decisions in the starting period. Since the investor is exposed to huge risk in the future 

market, the model minimizes the CVaR of portfolio losses while achieve an expected 

target return at the end of planning horizon.  

In our stochastic programming model, the uncertainties are simulated by a scenario 

tree. The random variables in our model are the market price movements of 

commodities. We project the market prices based on the historical data employing the 

improved moment-matching algorithm. The market information that listed in Table 1 

also served as deterministic parameters in our model. 

We define the following notations in our stochastic programming model: 

Sets: 
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Set of commodity futures  

User-specified parameters: 

Critical percentile for CVaR 

Expected target portfolio return over the planning horizon. 

Initial available case in root node. 

Deterministic input data: 

The lowest percentage of contract value that required by the exchange in 

the last month before contract expiration for commodity f F . 

Quantity of underlying deliverable commodity per contract f F . 

A fixed amount that paid by future investor for every commodity 

contract f F  

Price of commodity f F in initial period (root node). 

Scenario Dependent Data: 

Price of commodity f F at node n . 

Probability of node n , for simplicity, we generate symmetry scenarios 

with equiprobability, thus for ,  1/T n Tn N p N  . 

Decision Variables: 

No. of commodity contracts f F that long in node \ Tn N N  

No. of commodity contracts f F that short in node \ Tn N N  

Computed Variables: 

Cash amount that is not invested in the market at the end of node 

/ Tn N N  

The position of commodity f F at the end of node / Tn N N , in 

terms of number of contracts. A positive value indicates long position in 

the future, while negative means short position. 

Total portfolio value at the beginning of node n N  

             F

             



fmargin

fSize

fTranCost

0
fprice

InitCash

n
fPrice

n
flong

0Cash

n
fPosition

nValue

n
fshort

np
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Portfolio gain/loss during the period from node ( ) / Tp n N N  to 

/ 0n N ; 

Overall portfolio return over the full trading period at node Tn N . 

Overall portfolio loss over the trading period at node at node Tn N . 

Conditional Value at Risk. 

Auxiliary variables: 

Excess loss of VaR at terminal node Tn N  

equals to VaR at the optimal solution. 

Our stochastic programming model is developed as below: 

1
min  

1
T

n n
n N

z p y
 

 
   

. .s t  

+ , , /n n n
f f f TPosition long short f F n N N     

0Value InitCash  

  0 0 0
f f f f f

f F

long short Size price margin


     

  0 0
0f f flong short TranCost Cash InitCash        

 
   ( )( p n n p n

n f f f f
f F

Postion Size Price Price


              

 ( ) ( )
02 ), /p n p n

f f flong short TranCost n N N        

  0, /n np nValue Value n N N      

  n n n
f f f f f

f F

long short Size price margin


     

   , / 0 /n n
f f f n n Tlong short TranCost Cash Value n N N        

And finally, , Tn N   

1n
n
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R

InitCash
   

n

nR

nL

ny

z



 2

 3

 4
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n nL R   

n ny L z   

0ny   

T

n n
n N

p R 


  

The model is a linear stochastic programming with recourses. It is developed to cater 

arbitrary stages case. Our model determines a sequence of portfolio rebalance 

decisions during the planning horizon. Decision variables in our model are number of 

commodity futures that the investor long and short in each node in the initial and 

intermediate periods. The postulated outcomes of random variables in subsequent 

nodes determine the composition of portfolio construction and directly impact the 

decision in the later periods. Random variables are the prices of commodities in the 

future, which are projected by our moment-matching technique. The projection of 

scenario tree is considered as one of the most critical part in our modeling solutions. 

Each outcome at the node in the terminal period distinguishes a unique scenario of the 

tree. Our model minimizes portfolio risk which measured by CVaR at the end of 

planning period, while a minimum return   is set in the constraints as the investor's 

expected target at the end of period. The expected return is calculated over the 

equiprobably outcomes at terminal period. In the objective of our model, the 

conditional value at risk is measured by  , while z captures the VaR at optimal 

level. 

Equation 2. and 3. describe the situation of the commodity future investor at initial 

period. The investor is interested in participating in commodity future market with an 

amount of cash. The initial value of the portfolio that the investor has equals to the 

cash amount in hand. Equation 4. explains the formulation of the portfolio in the 

stages before terminal periods. Taking into account of initial margin requirements as 

well as the transaction cost, the investor enters the market by taking positions in 

selected commodity contracts based on his perceptions of future market movements. 

The margin ratio gives investor leverage on the future trading. The future margin ratio 

 10

 11

 12

 13
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in the last month of contract expiration day, which set by different exchanges are 

applied in the equations. The investor may choose to keep some cash in the pocket as 

he does not need to invest all of his money in the market to achieve his objective. The 

portfolio gain and loss during the trading period are defined in Equation 5.. As we 

mentioned previously, we use monthly trading period in our model. In each period, all 

future positions in the previous period are closed out in the starting and re-taken again 

based on the current market information and projected outcomes in the subsequent 

periods. Transaction cost is occurred twice during the process. The extremely low cost 

in future contract transaction makes our process realistic. We do not need to pay a 

large cost during the frequent taking and closing positions in futures contracts. 

Equation 6. captures the evolution of portfolio values during the planning horizon. 

Portfolio return and portfolio loss in the terminal nodes are defined in Equation 9. and 

10. respectively. Constraints in Equation 11. and 12. implied that  max ,0n ny L z  , 

which is the excess short fall over the planning horizon. Equation 13. defined the 

investor's expectation on the portfolio overall return over the planning horizon. 

A sequence of contract rebalance decisions are determined by our future contract 

management optimization model. Starting with an initial fund in the root node, the 

model provides optimal strategies in each node by specifying not only the allocation 

of funds across the future contacts but also the positions in each contract. In the same 

time, the model makes investment decisions to minimize the excess shortfall in the 

end of planning horizon. Our model is straightforward and easy to understand, but is 

served as a pioneer in exploring the effect of managing commodity future contracts by 

a stochastic programming approach 
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V. Empirical Results 

The stochastic programming models are solved by CPLEX in AMPL. We 

implemented single stage and two-stage models in Chinese commodity future markets. 

Through a series of numerical experiments in the real market, we explore the efficacy 

of stochastic programming approach in future contract managements. We repeatedly 

run the model in both single- and two-stage cases with alternative minimum target 

return constraints to compare the performances of stochastic programming models. 

The trend-following strategies that proposed by Szakmary, Shen and Sharma (2010) 

are also tested in the same market condition. We further compare the effect of 

stochastic models with those results generated by trend following strategies. 

To identify the most effective approach, we examine the performance of stochastic 

programming models and trend following strategies in dynamic backtesting 

simulations. All solutions are run in real market data on a rolling horizon basics over a 

18-month planning period starting from Mar 2012 to Sep 2013. 

1) Trend following strategies 

Before presenting the results of stochastic programming models, we implement two 

trend follow trading strategies which were proposed by Szakmary, Shen and Sharma 

(2010). They examined the efficacy of those strategies in commodity future markets 

as well. We briefly review the two trading strategies as below: 

a) Momentum Strategy: Based on the returns to a long position in a formulation 

period, all selected commodities are ranked independently to determined the top 

commodities as well as the bottom ones. We took long positions in those top 1/3 

commodities, and short positions in those bottom 1/3s. No position is taken in those 

middle commodities. The contract value of the top and bottom commodities are 

equally weighted. We use 3 and 6 months as the formulation periods to determined the 

past returns. 

b) Dual Moving Average Crossover (DMAC) Strategy: The short-term moving 

average (STMA) and long-term moving average (LTMA) are employed as the 

indicators of the price trending. STMA exceeding LTMA indicates there is an upward 
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trend in the price movement. Thus, we take long position in the commodity if STMA 

exceeds the LTMA by B percents as there is an upward trend identified, and short 

position if STMA fall below B percent of LTMA, no position is taken for the 

commodities that fall within the band. STMA of 1 months and LTMA of 3 and 6 

months is applied in our simulation. For B we use B=0.025 and 0.05. 

In the end of Mar 2012, starting with an initial cash endowment, each strategy is 

applied to determine the initial cash allocation among the selected commodities and 

the portfolio is re-balanced in the subsequent periods based on the realized real 

market data. The 18-month overall performances of momentum and DMAC strategies 

are shown in Figures 2 and 3.  

Even trend following strategies generally recorded impressive results in the end of 

planning horizon, large fluctuations were seen during the trading periods. Portfolio 

values in all cases experienced huge monthly losses during the 18-month planning 

horizon, and especially struggled in year 2012. The hugest recessions occurred in Sep 

and Oct 2012 when the commodity prices were moving in complete different ways 

with that past trends had been showing. The performance of trend following strategies 

were much improved when the clock advanced to Year 2013. Each portfolio value 

under the six strategies soared in Apr 2013 and experienced steady growth in the 

subsequent months. However, the end portfolio value under DMAC with parameters 

ST=1, LT=3 and B=0.05 was just 41% of the initial value remaining. Actually, the 

value was almost quadrupled during the first nine months of Year 2013. However, the 

failure in Year 2012 was disastrous as nearly 90% of the wealth had already 

disappeared in the beginning of Year 2013. The portfolio values were not recovered 

even a prosperity was shown in the coming new year.  

As shown in above case, big losses in the future trading is disastrous. How to keep the 

portfolio value change under stability and avoid big losses is remaining an important 

topic in future contract managements. In the following paragraphs, we present the 

solution of stochastic programming approach in this topic.  

2) Stochastic programming models 

We built both single- and multi- stage models in commodity future managements. The 
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Figure 2. Realized performance of momentum strategies. 

First graph shows the cummulative portfolio values during the 18-month planning horizon, while the second one displays the monthly portfolio return in each period. 

 

Figure 3. Realized performance of dual moving average crossover strategies: 
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solutions are consistent with those in the trend following strategies. In the starting of 

planning horizon - the end of Mar 2012, with the initial cash endowment, each model 

was implemented to determine the initial portfolio composition. The scenario tree was 

projected based on the statistics of the historical market information in the past 5 

years. Each model was solved by AMPL with the scenario tree as the input and the 

decisions regarding the optimal portfolio construction were recorded. Then we come 

to the next month period, the actual realized return of the portfolio in hand was 

calculated based on the revealed real market information, taking margin rate and 

transaction cost into accounts. A new scenario tree was built by matching the 

statistical properties of the price movement in the past five years. The cash in hands 

which resulting from decisions in previous period was re-allocated to each future 

account to maximize the investor's utilities by solving the model. The process was 

repeated for each coming month during the 18-month period until Sep 2013. The ex 

post realized returns and the progression of portfolio values during the planning 

horizon were recorded. The backtesting simulation in real market data provided key 

performance indicator to assess the effect of stochastic programming model in 

Chinese commodity future markets. 

We experimented below models with critical percentile 95%  for CVaR to assess 

the performance of stochastic programming approach: 

 a two-stage model that used a scenario tree with 15,000 scenarios  150 100  

generated by the moment-matching technique described above. 

 a single period model that run in a tree with 10,000 scenarios. 

The single period model considers the possible outcomes in the ahead month only, 

while two-stage model captures more information as the subsequent two-month 

period data are simulated. We firstly tested the model with expected monthly return 

target of 5%. We point out that, since margin rate is considered in the model, a target 

minimum return of 5% or more is achievable and realistic while the porfolio is 

exposed to a lervaraged higher risk. The realized returns of the two models applying 

real market information is presented in Figure 4. In both cases, targeted monthly 
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Figure 4. Realized performance of single- and two-stage mdoels in 0.05  . 

   

Figure 5. Realized performance of single- and two-stage models in 0.06  . 
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Figure 6. Realized performance of single- and two-stage models in 0.07  . 

 

Figure 7. Realized performance of single- and two-stage models in 0.08  . 
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return was sucessfully achieved, an averaged monthly return of 6.8% is realized in the 

single model, while the figure for two-stage model is 6.9%. The portfolio values were 

increased steadily during the planning horizon by applying both models, the wealthes 

showed slightly declines in depressed periods.  

However, the downside risk was well diversified by the solution of our models. In 

two-stage case, the portfolio value dropped down by only -0.7% in Mar 2013, which 

was the only month that saw declines in two-stage model. Meanwhile, in single-stage 

model, the portfolio value experienced depresses in Sep 2012 and Nov 2012. Both 

models generated approximately same averaged montly return and standard 

devaitions of return (4.8%) of the portfolio value, The two-stage model outperformed 

his single-stage counterpart by only showing one negative return month. 

The performance of two models were not significant different under minimum 

expected target return 0.05  , we furher investigated those results generated by 

single- and two-stage models with higher expected return . Monthly expected target 

returns of 6%,7% and 8%   were applied in the simulation resepectively. The same 

scenario trees that used in previous models were also employed in the solution of 

higher- models. Graphs in Figures 5-7 show the expermental results of the three 

cases. As the target return increased, the weight of commodities with higher expected 

returns in the portfolio increased substantially and the portfolio was exposed in a 

higher risky environment. Surprisingly, despite the risk was increased, both single- 

and two-stage models recorded steady portfolio value growth during the planning 

horizon. The averaged monthly expected returns was well achieved again, while 

portfolio recessions happened again in Sep 12 and Nov 12 and the decreasing 

percentages were amplified with the increase of expected target minimum return. For 

the 7%  , the porfolio value in single-stage model decreased by 1.5% and 2.5% in 

Sep and Nov respectively, while slightly wealth rise of 1.0% and 0.1% is recorded in 

two-stage model.   was further increased to 8% in the backtesting simulation, and 

same situation was identified. In Sep 2012, the portoflio value dropped by 3.7% and 
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1.6% respectively in the single- and two-stage models. When the trading activities 

moved to Nov 2012, single-stage model generated a 2.7% decrease, but the portfolio 

value in his two-stage counterpart enjoyed a 1.3% growth. These results showed that 

two-stage model is apparently considered as a better solusion. It consistently achived 

target returns while maintained greater stability of returns. The simulation results 

implied that the increased information contents in the multi-stage model brings 

incremental benefits into dynamic portfolio managments.  

3) Comparison of stochastic programming approcah and traditional trend 

following strategies. 

Fundamentally, our stochastic programming approach could be viewed as a kind of 

trend following strategies. To decide an optimal porfolio, it also considers past returns 

of the assets in the portfolio. Shortfalls are unavoidable in the bad times when the 

price movements are in contrast with the patterns that indicated by the historical data. 

The targets of our models are set to avoid excess shortfall while achieve minimum 

target returns during the planning hoizon. As we presented in the previous 2 sections, 

the stochastic programming approach successfully achived the target returns and 

generated much greater stability of return series. The downside risk in bad times are 

well diversified as well, with the best performance contributed by the multi-stage 

model, which implicitly includes additional future informaton as longer time period 

data are projected. 

Overal performances of stochastic approaches and trend following strategies that 

tested are summairzed in Table 3. These results show that the traditional trend 

following trading strategies in commodity future market are dominated by stochastic 

programming approaches. Although remarkable high geometric average returns were 

generated by most of the trend following strategies, high standard devaitions ranging 

from 10% to 30% were shown. Monthly losses were occurred frequently in the return 

series. During the 18-month planning hoirzon, the trend following strategies reported 

at least 5 monthly losses. The two-stage model definitely exhibited the best meaures. 

Comparing to its single-stage counterpart, it generally showed lower standard 

deviations while achieved the target returns. Number of months that experienced 

portfolio losses is also much less. The two-stage model showed only totally 4 monthly 

losses in all simulations. In an aggressive case of 7%  , the two-stage model 
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enjoyed a perfect performance 

during the full trading period as 

positive monthly return was 

recored in all trading months. 

These observations suggest that 

stochastic programing approach 

considering the return joint 

distributions in the past is a 

superior tool in the dynamic 

sequential decision making 

problems in Chinese 

commodity future markets  

We show the computational 

complexity in generating a 

scenario tree and solving model 

in multi-stage case finally. The 

model was solved in a regular 

personal laptop with Intel i7 

CPU and 8 GB ram. Alghough 

all procedures were automated 

in SAS and AMPL, it took 45 

miniutes to generate a two-stage 

tree with 15,000 (150x100) 

scenarios in SAS and 3 miniutes 

to solve the model in AMPL. 

The action was repeated 18 

times for a simulation. The 

soluton time will be increared 

proportional with the increaing 

number of scenarios. To 

increase the computational 

efficiency, the solution of the model can be moved to paralled computin system, 

which generally provided by professional academic and commecial institutes.  

Table 5. Statistics of realized monthly returns

Single
stage

Two
stage

μ=5%
Geometric Mean 6.79% 6.89%
Standard Deviation 4.81% 4.75%
Monthly Loss 2 1

μ=6%
Geometric Mean 7.99% 8.08%
Standard Deviation 5.87% 6.22%
Monthly Loss 1 2

μ=7%
Geometric Mean 9.69% 9.50%
Standard Deviation 7.67% 7.17%
Monthly Loss 2 0

μ=8%
Geometric Mean 12.01% 10.95%
Standard Deviation 9.83% 8.37%
Monthly Loss 2 1

Momentum
3-month

formulation
6-month

formulation
Geometric Mean 8.03% 4.61%
Standard Deviation 10.72% 10.95%
Monthly Loss 5 6

DMAC
ST=1
LT=3

ST=1
LT=6

B=0.025

Geometric Mean 6.67% 5.93%
Standard Deviation 20.36% 12.77%
Monthly Loss 6 5

B=0.05

Geometric Mean -4.78% 7.47%
Standard Deviation 30.78% 19.57%
Monthly Loss 8 6

KPIs of monthly realized
return

KPIs of monthly realized
return
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VI. Conclusions 

We presented a stochastic programming model for dynamic commodity future 

portfolio managements and demonstrated its feasibility and flexibility by applying the 

solution in the Chinese commodity future market. Through extensive simulations in 

the real market data, we compared the performance of stochastic programming model 

with the results generated by two traditional trend following strategies. The stochastic 

programming approach consistently achieved better performances in terms of high 

growth of the portfolio value and stability of returns, while the multi-stage case 

achieved best results as additional information was captured in the simulation of 

future outcomes.  

Our results also demonstrated that the CVaR is an ideal risk measurement for 

commodity future contracts. The CVaR objective in our model minimize the excess 

shortfall beyond VaR in the end of planning horizon and suitable for asymmetric 

distributions which were shown in the commodity return distributions. 

Scenario trees representing the uncertainties of future outcomes were served as a key 

input in the solution of stochastic programming model. We made an improvement in a 

scenario generation method proposed by Kaut and Wallace (2003). The improved 

moment matching algorithm made it possible to generate scenario tree with arbitrary 

outcomes that well matched the empirical distributions of historical data. Mean, 

standard deviation, skewness and kurtosis as well as the correlation matrix of random 

variables were captured as the approximation of empirical distribution.  

A contribution of this study is to develop automated computer programs to solve the 

complex scenario generation process and stochastic programming models. Our 

automated computer programs enable non-specialist to build their own models and 

solve problems using stochastic programming approach. 

We used monthly trading period in our model. while profit and losses are settled on a 

daily basis in future exchanges. However, our scenario generation and modeling 

approach could be extended to a daily trading period case. The monthly model was 

served as a pioneer to explore the efficacy of stochastic programming approach in 
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commodity future markets. The daily model could be easily implemented in a 

platform with higher computational efforts.  
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Appendix: Algorithm of improved moment-matching technique: 

Our moment-matching solution generally follows the procedures provided Høyland 

and Kaut (2002), but we modified the cubic transformation 2 3Y a bX cX dX        

as follows.  

The purpose of the modification is to generate arbitrary n  observations of random 

variable Y  with specified first four moments , 1...4,kE Y k   
  given a sample of 

random variables X with known first12 moments.  

Without loss of generality, we use , 1...12kx k   to represent the first 12 moments of 

X , and , 1...4ky k  denote the first 4 moments of Y . 

The problem is to find , ,  and a b c d in below equations. 

1 1 2 31.   y a bx cx dx     

     4
2 2 2 2

2 6 5 3 2 1

1
2. 2 2 2 2 2 2

n
y d x cdx bd c x ad bc x ac b x abx a

n


           

      
   
   
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2 2 2 2
5 4
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3 2 1
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3. 3 3 3 3 6

                          + 6 3 3 6 3 3

                          3 6 + 3 3 3

n n
y d x cd x bd c d x ad bcd c x

n

acd b d bc x abd ac b c x

a d abc b x a c ab x a bx a

 
      

    

     

 

 
  

 

   
   
 

2 2

2

4

4 3 3 2 2 3 2 3
12 11 10 9

2 2 4 2 2 2 3
8 7

2 2 3 3 2 2 2
6

3 1 1 ( 2)( 3)
4. 

2 3 ( 1)

     4 4 6 4 12 4

   12 6 12 12 12 12 4

   6 24 4 4 6 12 12

n n n n
y

n n n n n

d x cd x bd c d x ad bcd c d x

acd b d bc d c x abd ac d b cd bc x

a d abcd ac b d b c x a cd

    
   
      

     

       

       
   
 

2 2 3
5

2 2 2 2 4 3 2 3
4 3

3 2 2 3 4
2 1

12 4

   12 6 12 4 12 4

   4 6 4

ab d abc b c x

a bd a c ab c b x a d a bc ab x

a c a b x a bx a

 

      

   

 

Again, we rely on statistical software to solve the unknown parameters , ,  and a b c d

in above equations. 
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