

University of Macau

Department of Computer and Information Science

Design of “Hands-Free”

human-computer interface

by

Wai Kin Ho, Student No: D-B0-2704-3

Final Project Report submitted in partial fulfillment

of the requirements of the Degree of

Bachelor of Science

Project Supervisor

Dr. ZHOU Yicong

06 June 2014

Declaration

I sincerely declare that:

1. I and my teammates are the sole authors of this report,

2. All the information contained in this report is certain and correct to the

best of my knowledge,

3. I declare that the thesis here submitted is original except for the source

materials explicitly acknowledged and that this thesis or parts of this thesis

have not been previously submitted for the same degree or for a different

degree, and

4. I also acknowledge that I am aware of the Rules on Handling Student Aca-

demic Dishonesty and the Regulations of the Student Discipline of the Uni-

versity of Macau.

Signature :

Name : Wai Kin Ho

Student No. : D-B0-2704-3

Date : 06 June 2014

Acknowledgements

I would like to thank my supervisor, Dr. ZHOU Yicong, for his sup-

port throughout the development of my thesis.

I also would like to thank my teammate, Meng Chu Cheong, for all the

efforts and this thesis really would not have been completed without

her contribution.

Abstract

Nowadays, although electronic devices are everywhere, the traditional

interfaces limit the physically disabled people to access. Therefore,

we need to develop a new kind of interface which is not only for the

normal person, but also for the disabled people. This work presents

a video-based “hands-free” human-computer interface designed to of-

fer a friendly user experience and accessibility for everyone including

disabilities. The interface automatically captures the movement of

users’ eyes with camera and helps them to accomplish some simple

tasks with computer by eyes and head rotation. At last, we show the

first prototype of the interface which is implemented by Kinect for

Windows.

Contents

Contents iv

List of Figures vi

List of Tables vii

Listings viii

1 Introduction 1

2 Related work 3

2.1 Potential of this project . 3

2.2 Current iris detection methods . 4

3 System design 6

3.1 Sensor input layer . 6

3.2 Motion detection layer . 8

3.2.1 Iris detection method . 9

3.2.2 Calibration method . 12

4 System features 16

5 Implementation 17

5.1 Sensor input layer . 17

5.2 Motion detection layer . 18

5.2.1 Calibration . 18

5.2.2 Iris detection method . 19

iv

CONTENTS

6 Experimental results 23

6.1 Result of iris detection method 24

6.2 Compare to the state of art . 29

7 Conclusions 31

8 Future work 32

Appendix 33

References 42

v

List of Figures

3.1 The proposed system structure 7

3.2 The vectors di and gi corresponding to c 9

3.3 Sobel operator . 10

3.4 Examples of result of cascaded Adaboost. Iris most of the time is

located in the middle of the result. 10

3.5 Algorithm of the proposed iris-detection method. 11

3.6 Normal distribution [15] . 13

3.7 Two tail test. 13

3.8 Discrete Integration [3] . 15

6.1 The accuracy and processing time of proposed iris detection method. 24

6.2 The performance of proposed iris detection method. 25

6.3 Improvement with multi-threading. 26

6.4 The comparison of processing time between proposed iris detection

method and the original method. 27

6.5 The comparison of accuracy between proposed iris detection method

and the original method. 28

6.6 The result of iris detection method. 29

vi

List of Tables

6.1 The processing time of the iris detection method with and without

multi-threading . 25

6.2 The processing time of the original and proposed iris detection

method . 27

6.3 Normalize error rate of the iris detection method 28

6.4 The comparison of state of art. 29

6.5 The rank of Table 1. 30

vii

Listings

5.1 Code of Sobel operator . 20

1 Code of transforming the format of the captured images 33

2 Data structure of iris detection 34

3 Heap operations . 36

4 Thresholding . 38

5 Calculation of mode, variance, and probability 39

viii

Chapter 1

Introduction

As so many new technologies have been developed, computers become more

important in our lives. We have smart phones, tablets, even smart-houses to-

day. Every day, we need computers to accomplish our works, receive the latest

information, entertainment, or communicate to each other. Currently, the most

general way to control a computer is through the keyboard and mouse. More-

over, there are some new kinds of interfaces, such as touch screen, become a trend

of controlling electronic devices. However, no matter using keyboards, mouses,

or touch screens, people interact with computers or electronic devices still with

their hands. From a different point of view, most of the designs of interface are

assumed that all the users have hands, good fingers and can act normally. They

do not consider the disabled people whose hands are injured, paralyzed or even

do not have any hand. Especially in nowadays, electronic devices are all around

us. If a man can’t control these devices, he even is not able to take good care

of himself. For that reasons, the main purpose of this paper is to develop a

more user-friendly “hands-free” computer interface to manipulate the electronic

devices, especially for disabilities.

Although it is not easy to design a very nice interface for any people with

different demands, there are some interfaces are specially designed for disabilities.

For example, “mouth stick” is an interface which can help disabled people to type

characters with his mouse instead of hands. “Head wand” is a head-mounted

equipment which can provide the functions such as typing, navigating through

web documents, etc., by head rotation [14]. However, those equipments have some

1

limitations and therefore can’t fit for every disability. For the previous examples,

they are not suitable for people who can’t move his head, and it requires extra

training.

In order to develop a system which can be accessible to everyone, the selection

of a common physical device and approach to control computer is the most crucial

part. Nowadays, camera is the most common sensor which can be found in most

of the electronic devices. We have camera (at least one) attached on our phones,

computers and most of the hand-held devices. Besides, our eyes are the most

salient features of our face. We can get different information of others through

eyes’ contact, e.g. their thought, needs, cognitive processes, emotion, and even

the interpersonal relations [12]. Thus, our interface is designed to capture eye

rotation through cameras to manipulate the computer.

In this paper, a system structure for video-based “hands-free” human-computer

interaction interface is proposed. This structure enables our system to capture

the environment as an input, locate the user’s eyes and head, detect and analysis

the user’s motions, and helps user to accomplish simple operations of electronic

device. In addition to the system structure, our work mainly focuses on locating

the user’s irises since it’s the most difficult part throughout the structure. Once

the irises are detected, the user’s eyes motion capturing becomes much easier.

The first prototype of our system interface is also presented in this paper.

This prototype can capture the motions of eyes rotation and support the turning-

page function while user is reading the Power Point.

My work is mainly focus on the implementation of sensor input layer and the

motion detection layer. In the sensor input layer, the sensor needs to be integrated

into our system to capture the color image and the depth image. Second, the

noise of color images is needed to be removed before any processing. In the

motion detection layer, a quick and accurate iris detection method is needed to

be implemented in order to detect the user’s motion.

The remainder of this paper is organized as follows. Some related works are

introduced in Chapter 2. Chapter 3 presents our proposed system design. Chap-

ter 4 presents the system features. Chapter 5 presents Experimental results are

presented in Chapter 5. Chapter 6 includes conclusion and future the implement.

Conclusion is presented in Chapter 7 and future works in Chapter 8.

2

Chapter 2

Related work

Currently, most of the electronic devices do not provide the motion capturing

function. Although there are some stand-alone sensors are developed indepen-

dently for that purpose, it is not common. In order to see the potential of our

project, some researches are presented in the first section. In the second section,

different iris detection methods are introduced and explain the reason why they

are not the best candidate for our system.

2.1 Potential of this project

Although the motion capturing is not common nowadays, the new generation

is coming soon.

In fact, there have been some motion capturing sensors for the electronic

device. Except the Kinect, which will be introduced in Section. 3.1, ASUS also

developed a similar devices, Xtion Pro [2]. It provides two lens for depth image

capturing, one image color camera and two microphones. It also provides the

SDK for developers to implement their system in C++ or C# on the Windows

or Linux platform. However, the Kinect is a little bit better than Xtion Pro

compare to the physical devices of both of them.

Besides, the project of the Structure Sensor [9] developed by Occipital com-

pany is successfully funded on 1st of November in 2013. The Structure Sensor

provides the 3D depth image capturing function and it is able to attach to the

3

mobile devices which is running on the IOS platform. It also provides the SDK

for manipulate the sensor. With this sensor, our system structure can also be

implemented in the mobile devices, such as iPhone, iPad.

On the Android platform, according to the latest report, Google is develop-

ing a new tablet with two cameras and a infrared depth sensor. The tablet is

developed as part of Google’s new project Tango program [4] and they claimed

that they plan to produce 4000 prototypes and they are going to be released

before the Google I/O at the end of June in this year.

We can expect that in the future, most of the electronic devices are able

to capture the user’s motion, and the traditional approaches of accessing the

interface will be changed.

2.2 Current iris detection methods

Researchers have been done on different aspects of iris detection method.

Basically the current iris detection methods are divided into four main parts:

shape-based, appearance-based, feature-based, and hybrid methods [5].

A shape-based method proposed by Yuille et al [16] which is using a de-

formable eye model consists of two parabolas representing the eyelids and a circle

for the iris and the model is fitted to the image through an update rule. How-

ever, this kind of method is computational complex due to the complexity of the

template. Also, when the eye occluded by the eyelid, this method also have a

difficulty to locate the iris.

Another method proposed by Kim and Ramakrishna, R.S. [6] is utilizing

the edge of the iris. They proposed the longest line scanning and the occluded

circular edge matching which is less complex than the method of eye model fitting

proposed by Yuille et al. However, this method only works on near fontal-faces

and the exact edge of iris is not easy to extract from a noisy image captured by

low resolution camera.

Kothari and Mitchell [7] have proposed a method that is similar to us and

our method is the improved version of it. They utilize the gradient vector field

and extrapolated in a direction opposite to the gradient in order to locate the

iris. However, the result shows that it’s not accurate enough since the eyebrows,

4

eyelids or glasses may influence quite a lot.

There are also some other different methods, for example, a learning-based

method proposed by Reinders et al. [10], a voting scheme utilizes the isophote

curvature proposed by Valenti and Gevers [13].

However, most of the methods do not mention the efficiency. Some of them

need a very clear image or a near-frontal image. In order to capture the user’s

eye motion in real-time video stream. The method with efficient, working on low

resolution images, and high accuracy rate is needed.

5

Chapter 3

System design

Our proposed system structure is shown in Fig. 3.1. It is composed of four

main parts: sensor input layer, image analysis layer, motion detection

layer and application interface layer. Firstly, the sensor input layer cap-

tures the depth image and color image from the environment through sensor.

After that, the image analysis layer locates the position of eyes and heads

from the color image. Then, combining the depth image, the motion detection

layer detects the user’s motions according to the location of eyes and heads.

Finally, the application interface layer triggers the corresponding pre-defined

event and giving back the response to user according to the motions the system

detected. In the following, the structure will be introduced layer by layer in

detail.

3.1 Sensor input layer

The sensor input layer is used to capture the information from environment

as an input to our system through sensor. Since camera is the most common

device nowadays, it should be the best candidate. However, concerning about

the speed of capturing user’s motions, manipulate cameras are better. Although

there are some new generation of devices with two cameras and infrared depth

sensor is under developing, at present, the only suitable device for our project is

Kinect for Windows [8].

6

Figure 3.1: The proposed system structure

7

Kinect for Windows is a motion-capturing device developed by Microsoft.

Originally, it’s designed for playing video games with X-Box 360. It provides

one color image camera and two lenses for depth image capturing. Also, Kinect

provides a microphone array in order to capture the voice. Moreover, Microsoft

also provides a set of robust SDK for Windows to manipulate. The SDK provides

functions like skeleton tracking, gesture detection and voice recognition and en-

ables developer to use C++, C#, or Visual Basic to develop application. The

latest version of Kinect device is Kinect v2 and SDK v1.8.

The supported resolutions of the image camera of Kinect are 640× 480 with

fps 15, 640 × 480 with fps 30 and 1280 × 960 with fps 12. Also, it supports

different format of color, like RGB, YUV and Bayer. In our implementation, the

resolution of the camera is configured to the setting of 640×480 with fps 15 with

YUV format.

Although Kinect for Windows is multi-functional, the only function it pro-

vides to our system is the depth image capturing. If any other device can provide

or replace this function, our system is able to independent from Kinect for Win-

dows totally.

After the color images are captured from the camera, the Gaussian filter with

a size of 3 is applied to the image in order to remove the noise and amplify the

contrast by using the histogram equalization. After this, it’s ready to process the

captured input in next layer.

3.2 Motion detection layer

After some processes of the second layer(image analysis layer), the system

is able to locate the positions of user’s eye. After that, user’s motions can be

detected by tracking their eyes and head. However, due to the time constrain,

our project mainly focuses on tracking user’s eyes with iris detection method,

which also is the most difficult part of the system. In order to detect user’s iris,

the original method proposed by Fabian Timm and Erhardt Barth [11], hereafter

referred to as “original method is used. There is one common characteristic

of any nationality or ethnicity of people, that is, their eyeballs are all circular

shape. Therefore, the basic idea is to find the center of a circular object and,

8

geometrically, the center can be located by analyzing the gradient vector field of

the image.

3.2.1 Iris detection method

According to the Fig. 3.2, the center of a circle has a property that the vector

from the center c to any point at the edge xi, denoted as di, is parallel to the

gradient vector at the point xi, denoted as gi.

Figure 3.2: The vectors di and gi corresponding to c

Recall the definition of inner product of two vectors,

−→
A ·
−→
B = |A| × |B| × cos(α) = (x1 × x2) + (y1 × y2) (3.1)

where
−→
A = (x1, y1),

−→
B = (x2, y2), α is the angle between

−→
A and

−→
B .

The maximum value can be obtained when α is equal to zero, that is,
−→
A is

parallel to
−→
B . Note that the value of the inner product will vary according to the

magnitude of the vector. Therefore, all the vectors before the calculation needed

to be normalized.

The relationship between a possible center and the orientations of the image

gradient field can be described as:

c∗ = argc max{ 1

N

N∑
i=1

(dTi gi)
2} (3.2)

where

9

di =
xi − c
‖ xi − c ‖2

,∀i :‖ gi ‖2= 1. (3.3)

One important thing which do not mention in the original method is that,

two vectors with opposite direction should be ignored, which can be done by only

summing up the positive value of the dot product.

Furthermore, in addition to the original method, some extra works have been

done. First, the original method involves all the gradient vectors of an image into

the calculation. In fact, it can be dramatically reduced the complexity of the

calculation by only involving the points on edge of the image. Recall that the

gradient image can be obtained using the Sobel operator (Fig. 3.3), and rough

edge can be detected by applying a threshold on the gradient image. Besides,

only the most 500 intensive gradient vectors are reserved and involved into the

calculation after extract the edge point in order to further reduce the complexity.

Figure 3.3: Sobel operator

Figure 3.4: Examples of result of cascaded Adaboost. Iris most of the time is
located in the middle of the result.

Second, the local maximum of the inner product is sufficient or even better to

indicate the center of a circular object. Due to the observation of the result from

cascaded Adaboost (Fig. 3.4), most of the time the most important information

is concentrated in the middle of the image. Moreover, some of the unnecessary

information, such as eyebrow, glasses, is on the border of the image. A local

maximum can be found quickly by an iterative method initiated from the center

10

point, denoted as p, of the image. Each time the inner product is calculated

within the neighbor of p, and select the maximum as the new p and continue

the process until no point with larger inner product can be found. The whole

algorithm is shown in Fig. 3.5.

Figure 3.5: Algorithm of the proposed iris-detection method.

There are two parameters in this method: threshold and window size.

The threshold is applied to the gradient image in order to extract the edge

points. The window size indicates, during calculating the sum of inner product

of p, the size of the region which is center-aligned to the point p, and the pixels

in that region are considered as the neighbor of the point p. The selected values

11

of these two parameters are presented in the Section 6.1 with the experimental

results.

After located irises, the motion of user’s eyes can be detected. A simple

method is to ask user for staring at some points (e.g. four corners of the screen)

in order to calibration the initial position of irises. Due to the problem of slight

head movement, it can be re-corrected by tracking the center point between

two eyes and the distance between eyes and Kinect. The idea of calibration is

discussed in the next section.

3.2.2 Calibration method

The basic idea of calibration is to make use of the Gaussian distribution.

The Gaussian distribution, also known as normal distribution, is a very common

probability distribution. The curve of the function is shown in Fig. 3.6, also

known as bell-shaped curve, and the formula is shown as follow:

f(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.4)

where µ is the mean and σ is the standard deviation.

During the calibration, first, the user is asked for looking at some points

on the screen. Meanwhile, the system captures the positions of user’s irises and

records all the captured data. The system captures 50 data points of each of the

user’s iris, and theoretically, it needs to take about 3 second with 15 fps of the

camera. After collecting enough points of the user’s irises, the system calculates

the mode and the variance of the data points. Note that the mode is used instead

of mean since the positions of the user’s irises might be unstable due to the wrong

detection of the iris, some unconscious motions of user, eyes blinking, or noise.

The mean is affected a lot in those cases, but mode isn’t. Therefore, the mode

is selected as the parameter of Gaussian distribution instead of mean. In order

to have a more accurate result of calibration, the variance should be less than a

certain value. If the variance is too high, it indicates that the result are affected

by some issues. In that case, the calibration for that iris needs to redo again

until the variance o f the data is low enough. After the variation and mode is

calculated, the Gaussian distribution model can be built for each event.

12

Figure 3.6: Normal distribution [15]

Figure 3.7: Two tail test.

13

In order to calculate the probability, two-tailed test are used (Fig. 3.7). The

probability of a variable x with two-tailed test can be calculated by the follows:

p =
∫ −x
−∞

1
σ
√
2π
e−

(x−µ)2

2σ2 dx+
∫∞
x

1
σ
√
2π
e−

(x−µ)2

2σ2 dx

= 2
∫
x
∞ 1

σ
√
2π
e−

(x−µ)2

2σ2

(3.5)

It calculates the surface under the interval (−∞,−x] and [x,∞) of Gaussian

function. Since the Gaussian distribution is symmetric to its mean, only half

of the surface needs to be calculated, and the remaining parts can be done by

doubling the result.

To calculate the integral, we can use the trapezoidal rule. It is a numerical

method for approximate an integral. It divides a continue function into some

trapezoids, calculates their surfaces and sums them up. For a domain divided

into N equal interval, where a = x1 < x2 < K < xN+1 = b, the formula of

trapezoidal rule is shown as follows:∫ b
a
f(x)dx ≈ h

2

∑N
k=1(f(xk+1) + f(xk))

= b−a
2N

(f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xN) + f(xN+1))
(3.6)

However, note that the interval of integral of formula 3.5 is from x up to

∞, such b can’t be obtained in that case. Therefore, a 4x is specified as the

increment instead of (b − a)/2N , and the calculation stops when the f(xi) is

smaller enough.

After the calibration is done, the model is built. Then, we can detect the

user’s motions by input the position of user’s irises into the model and calculate

the likelihood to trigger the event.

14

Figure 3.8: Discrete Integration [3]

15

Chapter 4

System features

Our system can help user to accomplish some simple tasks with computer

through eyes rotation or head rotation. It automatically tracks the motion of

user’s eyes and head. Furthermore, it is independent from any device, platform

and language. It does not require any specific except two cameras or a camera

with a infrared sensor. It is easy to expand the system in order to support

various motion manipulations. It can also be applied into different application,

e.g. stereoscopic display, after some small modification.

16

Chapter 5

Implementation

In this section, the implementation of some important parts of our system

is presented. Recall that this report focuses on two layers: sensor input layer

and motion analysis layer, some special techniques such as data flow and data

structure in these two layers are highlighted. Some codes of the crucial algorithm

in this section can be referred to the Appendix.

5.1 Sensor input layer

This layer mainly focuses on how to capture the input environment. Since

the configuration can be easily found in the Kinect for Windows documentation,

the main focus in this section is the data flow of this layer.

Note that the images captured from Kinect for Windows is fetched frame by

frame. The Kinect for Windows SDK provides some methods for developer to

register some handler functions to the sensor corresponding to each input, that is,

color image and depth image input frame. The handler function is invoked each

time each frame of image is captured. With the parameters which are passed by

the handler, the corresponding input can be fetched into the system.

To propagate the image from this layer to other layers, same working princi-

ple is adapted. Since the depth image captured has not yet implemented into our

first prototype, there are two functions that are implemented for other layers to

register the handlers: the gray image input handler function and the color image

17

input handler function. Since all of our algorithms are worked with gray-level im-

age, the conversion between color and gray level image is done in the this layer, as

well as the Gaussian filtering and the histogram equalization. However, in order

to display the results in color, it needs to access the color images. Therefore,

two input handlers are opened for different purpose. Furthermore, under this

design, the structure of implementation of other layers becomes clear. All the

image-processing can be implemented in the gray image handler, and left all the

implementation of displaying output in the color image handler.

Besides the data flow, one thing about the data structure is needed to be

highlighted. Since EmguCV library provides most of the functions of image-

processing to our system, the images are needed to store in the structure the

library can process. The structure to store the images which are captured from

Kinect for Windows is an array of byte, and the structure using in EmguCV

library is Emgu.CV.Image. In order to transform the format of the captured

images, an intermediate format, that is, the System.Drawing.Bitmap, is used.

The codes of the conversion between them is listed in Appendix, List. 1.

5.2 Motion detection layer

This layer tracks the user’s eyes motions. It is composed of two parts: cal-

ibration method and iris detection method. About the data flow of the motion

detection layer. Since there are only two events are implemented in our first pro-

totype, this layer sends three kinds of flag as output to indicate different state of

the users eyes, that is, user is looking at the right side, left side, or neither side.

In the first section, some technical issues of the calibration method are dis-

cussed. After that, the implementation of iris detection is presents in the second

section.

5.2.1 Calibration

In this part, the Gaussian distribution is used to build up a probabilistic

model. To calculate the probability of each event, the trapezoidal rule with a

little modification is proposed.

18

During the calibration, some data points are collected. Each data points

contain four data values, that is, the x and y coordinate for each eye. Also, a set

of data points needed to be collected for each event. Therefore, the data volume

is up to 4×amountofdata×amountofevent. To store such a data, an array with

the EyesData class is implemented. The EyeData class consists of four integer

variables, corresponding to the coordinate for each eye. The data points of each

event are interleaved stored, that is, the data for the first event are stored in the

position of 0+k×amountofevents, for the second event are stored in the position

of 1 + k × amountofevents, and so on. Therefore, only a one-dimensional array

is employed to store the data instead of an n-dimensional array for n events.

One more thing about the calculation of the probability, note that if the

variable x is smaller than the mean, the interval of the integral should be from

−∞ to x, otherwise, it should be from x to∞. Therefore, we need to change the

sign of the increment according the variable x.

Some related codes about the calculation of mode, variance, and probability

is presented in the Appendix, List. 5.

5.2.2 Iris detection method

The basic idea of the proposed iris detection makes use of the gradient vector

field. It can be obtained by the Sobel operator. One thing should be toke care

is that since the representation of the coordinate in traditional image-processing

and mathematic is different, the Sobel operator shown in Fig. generates the

gradient vectors with an inverse direction to the vector di (please refer to Fig. 3.3

). In order to correct this, the rows and columns are turned upside down and

laterally reversal. The modified Sobel operator is shown in below:

19

Listing 5.1: Code of Sobel operator

private static float[,] GY = new float[3, 3] {

{-1, 0, 1},

{-2, 0, 2},

{-1, 0, 1}

};

private static float[,] GX = new float[3, 3] {

{-1, -2, -1},

{ 0, 0, 0},

{ 1, 2, 1},

};

Besides, the efficiency of the program can be improved by some code opti-

mization. First, the access of the variables from the Emgu.CV.Image is too

slow. To traversal an image stored with the Image format, it is double times

slower than traversing an image stored with an array format. It’s better to con-

vert the format into an array. However, instead of convert the whole image to

an array, the better way is to only store the necessary data in a one-dimensional

array. Recall that the proposed method only selects the gradient vectors which

are on the edge into the calculation. There are two kinds of data required in the

algorithm: vector and point position. The data of vector including the gradient

vectors and the vectors di, and the point position including the location of the

points on which the gradient vectors are selected. This information is needed

in order to calculate di. Note that these two data are obtained after applying a

threshold to the gradient image. Therefore, during the thresholding, instead of

putting zeros in the gradient image, the candidate of gradient vectors are inserted

into a one-dimensional array. After this optimization, the gradient images only

needed to be traversal once, and the remaining part of the iris detection method

is totally free from the Emgu.CV.Image.

By the way, more about the data structure, there are two classes are imple-

mented: the Vector class and the Position class. The Vector class, just as its

name implies, is using for storing the vector. It includes two data members with

type of double, i.e. x and y, corresponding to the direction of the vector. It also

20

concludes two methods: Magnitude() and Normalize() for calculate the magni-

tude of the vector and normalization. Note that the value of magnitude doesn’t

stored in the class since most of the time the algorithm only requires the direction

of the vector, but thresholding. The Position class is using for store location of

a point. It only includes two integer variables, also x and y. This class is more

general than Vector and it is invoked throughout all the layer, for example, to

store the points of user’ irises, or the location of each gradient vectors.

More details about the thresholding, firstly, recall that the proposed method

only reserves 500 the most intensive gradient vectors. In order to quickly filter

out these 500 vectors, some operations of heap is implemented. A heap is a

specialized tree-based data structure. It has the advantages such as it can locate

the minimum or maximum value from data set quickly by reserving the minimum

information about which, and the insertion is relatively low cost. Also, it can be

implemented with an array, which is compatible with our data structure. Note

that to find out the 500 most intensive vectors, the only information needed is the

current minimum value of the intensive. It can be done by comparing the current

value to the minimum and replacing the minimum value whenever the current

value is larger than it. However, the heap may break the data into fragments if

the amount of elements is smaller than the capacity of heap. Some advantages

of the array are lost due to fragmentation since the whole array needed to be

traversed each time in order to check whether it still has the data in behind. To

avoid the fragmentation, when the number of elements is under the capacity, the

new elements are inserted into the array normally without any heap operation.

Whenever it reaches the capacity, the BuildHeap function is invoked to convert

the array into a heap. After that, all the new elements are inserted into the array

with the heap operation.

Secondly, as mentioned before, in most of the time magnitude is not required,

but thresholding. Moreover, both the vector and the position are required to be

stored. Instead of create a new class for these data, a derived class from the

Position class, the ExPosition class, is implemented. Besides the data member

it includes originally, it also includes an extra double variable, magnitude, and

a vector v. Since the ExPosition is derived from Position, the results which is

stored in an array with type of ExPosition can be directly assigned to the array

21

of Position by upcasting. It keeps the Position class more general and more

efficient.

Another code optimization is make used of multi-threading. One advantage

of the proposed iris detection method is that the algorithm can be highly paral-

lelized. There are four parts which can be parallelized in the program. First, the

whole process can be parallelized since each point on the image can be processed

individually. Second, the calculation of the magnitude in the process of thresh-

olding can be parallelized. However, the process of selecting the most intensive

vectors can’t be parallelized. Third, the process of calculating the inner product

can be parallelized, note that it doesn’t include the summing part. At last, the

whole process of calculating the di can be parallelized.

In Appendix, List. 2 shows the data structure of the iris detection. List. 3

shows the heap operation. List. 4 shows the process of thresholding.

22

Chapter 6

Experimental results

In this session, the results are discussed into two parts. In the first part, the

results of the proposed iris detection method are shown. It compares the process-

ing time and the accuracy rate between the original method and the proposed

method.

To compare the processing time, different scale of images are input into the

program and the processing time is recorded. Besides, in order to simplify the

work of the comparison, the original method is implemented regardless the prior

knowledge and post-processing .

In order to compare to the original method, the BioID database [1] is used to

evaluate the accuracy. The accuracy of the method is measured by normalized

error proposed by Jesorsky et al. It is defined as:

e ≤ 1

d
max(el, er) (6.1)

where el, er are the Euclidean distances between the estimated and the cor-

rect left and right eye centers, and d is the distance between the correct eye

centers.

In the second part, it presents the results of the comparison between the

proposed method and the state of art (including the original method).

23

6.1 Result of iris detection method

In this section, it presents the performance of the proposed iris detection

method and the experimental results for choosing the parameters.

There are two parameters need to nailed down: threshold and window

size. Some experiences have been done to compare the processing time and

accuracy corresponding to each parameters, which is shown in Fig. 6.1. The

yellow bars are the relative difference between the accuracy and processing time.

In order to compare each parameters, the relative different is quantified and

shown in Fig. 6.2. Note that the data of Fig. 6.2 is only a valued-representation

of the yellow bar of Fig. 6.1. The values of data only for comparing between each

parameters and do not indicate any other information. According to the figure,

threshold can affected very much in performance since the higher threshold can

eliminate more amount of gradient vectors. On the other side, the window size

affect a lot the accuracy rate. The best result is indicated by the threshold of 50

and the window size of 8× 8.

Figure 6.1: The accuracy and processing time of proposed iris detection method.

24

Figure 6.2: The performance of proposed iris detection method.

Image Size
Without multi-threading With multi-threading
best avg worst best avg worst

0 0 0 0 0 0 0
20x20 1 4 4 1 4 8
40x40 2 13 11 2 11 16
60x60 7 17 16 4 13 13
80x80 9 23 15 4 15 17

100x100 13 33 30 5 18 31
120x120 14 40 25 6 19 20

Table 6.1: The processing time of the iris detection method with and without
multi-threading

25

Fig. 6.3 and Table. 6.1 shows that the processing time of the proposed iris

detection method with and without the multi-threading. Just as mentioned in

Chapter. 5, one advantage of the proposed iris detection is can be highly paral-

lelized. In order to show this, several images are input into two programs of the

same iris detection method, one is optimized with multi-threading, another isn’t,

and the processing time is recorded. The results are generated by inputting 1502

face images into the program, and each face image contains two eyes. Every eyes

on the face images are located by some rectangle regions with different size. In

fact, it is equivalent to input different size of eye images. Therefore, the results

are actually the processing time of two times of iris detection. Note that the

accuracy of the algorithm isn’t indicated in this result.

Figure 6.3: Improvement with multi-threading.

According to the figure, although the results generated by the images with

smaller scale (20 × 20, 40 × 40, 60 × 60) don’t perform big different, it almost

or even performs double times quicker with the images with large scale (100 ×
100, 120× 120).

After that, the results of comparison between the original method and the

proposed method according to time and accuracy are shown. Table. 6.2 shows

that the processing time with different size of the input images. Fig. 6.4 shows

that the comparison of the average processing time between the original method

and the proposed method. The processing time is generated by same method

26

Image Size
Original Improved

best avg worst best avg worst
0 0 0 0 0 0 0

20x20 15 56 48 1 4 8
40x40 104 375 335 2 11 16
60x60 253 850 554 4 13 13
80x80 447 1573 935 4 15 17

Table 6.2: The processing time of the original and proposed iris detection method

mentioned above. By theory, the original method has a running time of O(n3)

respect to x, however, our method, only takes O(n). According to the figure, the

proposed method has a better and better performance of processing time when

the size goes larger and larger.

Figure 6.4: The comparison of processing time between proposed iris detection
method and the original method.

Besides, Fig. 6.5 and Table. 6.3 shows the accuracy of the proposed method

and compares to the original method. To extract the image of user’s eyes, a size

27

of 40 × 40 rectangle is drawn at the point of the iris. In order to simulate the

result of cascaded Adaboost, a random offset with ±20% to its size is added to

the located point of the rectangle. The results are generated with the threshold

of 50 and the window size of 8 × 8. Moreover, the gaussian filter is disabled.

Although the proposed method does not perform as good as the original in the

normalized error of 0.05, it does in most of the time.

Normalize error rate Original Improved
0.05 82.50% 74.23%
0.1 93.40% 94.48%
0.15 95.20% 97.44%
0.2 96.40% 98.82%
0.25 98.00% 99.51%

Table 6.3: Normalize error rate of the iris detection method

Figure 6.5: The comparison of accuracy between proposed iris detection method
and the original method.

28

Figure 6.6: The result of iris detection method.

6.2 Compare to the state of art

Table 6.4 shows the performance of each method currently and the Table. 6.5

shows the rank of each method. The underline indicates that have been accurately

measured from author’s graphs. (∗) Images with closed eyes and glasses were

omitted. (•) Methods that don’t involve any kind of learning or model scheme.

Since some authors didn’t provide any graphical evaluation of the performance,

e.g. by using a WEC curve, intermediate values couldn’t be estimated - these

missing values are denoted by “−”.

Table 6.4: The comparison of state of art.

29

Table 6.5: The rank of Table 1.

30

Chapter 7

Conclusions

This paper presents a “hands-free” human-computer interface by capturing

the motions of user’s head and eyes in order to control the computer. It includes

the design of the system structure and the methodology to implement each layer.

The system structure enables the system being implemented in different plat-

form, application and can be easily expanded in order to support various motion

capturing.

Moreover, in the motion detection layer, the proposed iris detection method

can quickly locate the user’s irises accurately. Compare to the original method

or state of art, the proposed method improved a lot in processing time and the

accuracy is still very promising.

In the future, we hope that it could be truth that the “hands-free” interface

can further replace the traditional interface and can help more people to control

the computer.

31

Chapter 8

Future work

Currently, we just implemented our system with Kinect. In the future, we’d

like our system can be also implemented on any other devices. Therefore, we

are going to implement it with only one frontal camera. Besides, in order to

fulfill our system and to be more comprehensive, we will try to combine the

speech recognition and text-to-speech function into our system. We’d like our

system can be implemented in different platform, especially in mobile device.

Furthermore, we’d like to expand our improved iris detection algorithm to more

application, for example, the naked-eye 3D.

32

Appendix

Listing 1: Code of transforming the format of the captured images

public Image<Gray, Byte> ConvertImageFormat(byte[] colorPixels, int

width, int height)

{

Bitmap bitmap = CreateBitmap(colorPixels, width, height);

Image<Bgr, Byte> image = new Image<Bgr, Byte>(bitmap);

}

public Bitmap CreateBitmap(byte[] pixels, int width, int height)

{

Bitmap bitmap = new Bitmap(width, height,

Imaging.PixelFormat.Format32bppRgb);

Imaging.BitmapData bmapdata = bitmap.LockBits(new

Drawing.Rectangle(0, 0, width, height),

Imaging.ImageLockMode.WriteOnly, bitmap.PixelFormat);

IntPtr ptr = bmapdata.Scan0;

InteropServices.Marshal.Copy(pixels, 0, ptr, pixels.Length);

bitmap.UnlockBits(bmapdata);

return bitmap;

}

33

Listing 2: Data structure of iris detection

// The data structure of the iris detection method

public class Position

{

public int x;

public int y;

public Position() { }

public Position(int x, int y)

{

this.x = x;

this.y = y;

}

}

public class Vector

{

public double x;

public double y;

public Vector() { }

public Vector(double x, double y)

{

this.x = x;

this.y = y;

}

public Vector Normalize()

{

double magnitude = Magnitude();

x = x / magnitude;

y = y / magnitude;

34

return this;

}

public double Magnitude()

{

return Vector.Magnitude(x, y);

}

public static double Magnitude(double x, double y)

{

return Math.Sqrt(x * x + y * y);

}

}

public class ExPosition : Position

{

public double magnitude;

public Vector v;

public ExPosition(Position pos, double magnitude, double x, double

y)

{

this.x = pos.x;

this.y = pos.y;

this.magnitude = magnitude;

this.v = new Vector(x, y);

}

}

35

Listing 3: Heap operations

//The heap operations:

public void AddElement(Position element, double magnitude, double x,

double y)

{

// if the amount of the elements doesn’t reach the capacity of the

array

if (size < elements.Length)

{

elements[size++] = new ExPosition(element, magnitude, x, y);

// build heap once it reaches the capacity

if (size == elements.Length) BuildHeap();

}

else

{

// insert into heap when it exceeds the capacity

InsertHeap(new ExPosition(element, magnitude, x, y));

}

}

private void BuildHeap()

{

for (int i = (elements.Length - 1) / 2; i >= 0; i--)

{

PercolateDown(i);

}

}

private void PercolateDown(int pos)

{

int child = pos * 2 + 1;

ExPosition element = (ExPosition)elements[pos];

while (child < elements.Length)

36

{

if (child + 1 < elements.Length && ((ExPosition)elements[child

+ 1]).magnitude < ((ExPosition)elements[child]).magnitude)

{

child++;

}

if (((ExPosition)elements[child]).magnitude < element.magnitude)

{

elements[pos] = elements[child];

pos = child;

child = pos * 2 + 1;

}

else

{

break;

}

}

elements[pos] = element;

}

private void InsertHeap(ExPosition element)

{

if (element.magnitude > ((ExPosition)elements[0]).magnitude)

{

elements[0] = element;

PercolateDown(0);

}

}

37

Listing 4: Thresholding

//Codes for thresholding:

Object synLock = new Object();

public void Thresholding(Image<Gray, float> gx, Image<Gray, float> gy,

int threshold){

Parallel.For(0, gx.Rows, i =>

{

Parallel.For(0, gx.Cols, j =>

{

double x = gx[i, j].Intensity;

double y = gy[i, j].Intensity;

double magnitude = Vector.Magnitude(x, y);

if (magnitude > threshold)

{

Position pos = new Position(i, j);

lock (syncLock)

{

AddElement (pos, magnitude,x, y);

}

}

});

});

}

38

Listing 5: Calculation of mode, variance, and probability

// Find the mode

public EyesData calMode(EyesData[] data, int state)

{

Dictionary<int, int> leftXcounts = new Dictionary<int, int>();

Dictionary<int, int> leftYcounts = new Dictionary<int, int>();

Dictionary<int, int> rightXcounts = new Dictionary<int, int>();

Dictionary<int, int> rightYcounts = new Dictionary<int, int>();

// Count the data

for (int i = state; i < data.Length; i += sizes.Length)

{

SuccCounts(leftXcounts, data[i].leftX);

SuccCounts(leftYcounts, data[i].leftY);

SuccCounts(rightXcounts, data[i].rightX);

SuccCounts(rightYcounts, data[i].rightY);

}

// Find the max count

int leftXMaxCount = leftXcounts.Max(g => g.Value);

int leftYMaxCount = leftYcounts.Max(g => g.Value);

int rightXMaxCount = rightXcounts.Max(g => g.Value);

int rightYMaxCount = rightYcounts.Max(g => g.Value);

// Find the value according to the max count

int leftXMode = leftXcounts.First(g => g.Value ==

leftXMaxCount).Key;

int leftYMode = leftYcounts.First(g => g.Value ==

leftYMaxCount).Key;

int rightXMode = rightXcounts.First(g => g.Value ==

rightXMaxCount).Key;

int rightYMode = rightYcounts.First(g => g.Value ==

rightYMaxCount).Key;

return new EyesData(leftXMode, leftYMode, rightXMode, rightYMode);

39

}

private void SuccCounts(Dictionary<int, int> counts, int element)

{

if (counts.ContainsKey(element))

{

counts[element]++;

}

else

{

counts[element] = 1;

}

}

// Calculate the variance

private double[] calVar(EyesData[] data, EyesData mean, int state)

{

double leftXVar = 0;

double leftYVar = 0;

double rightXVar = 0;

double rightYVar = 0;

// Var(x) = E((x - mean)^2)

for (int i = state; i < data.Length; i += sizes.Length)

{

leftXVar += Math.Pow((data[i].leftX - mean.leftX), 2);

leftYVar += Math.Pow((data[i].leftY - mean.leftY), 2);

rightXVar += Math.Pow((data[i].rightX - mean.rightX), 2);

rightYVar += Math.Pow((data[i].rightY - mean.rightY), 2);

}

return new double[] { leftXVar / data.Length, leftYVar /

data.Length, rightXVar / data.Length, rightYVar / data.Length };

}

40

// Calculate the probability according to the model

public double calProbability(int x, int mean, double var, double delta)

{

double dx = x;

double dy = 0;

// factor of Gaussian distribution

double factor = 1 / Math.Sqrt(var * 2 * Math.PI);

// Gaussian distribution

Func<double, double> normal = v => factor * Math.Exp(-(Math.Pow(v -

mean, 2)) / (2 * var));

// initiate variables

double a = normal(dx);

double b = 0;

double height = delta / 2;

double result = 0;

// change the sign of the delta according to the variable x

int sign = x > mean ? 1 : -1;

// trapezoidal rule

do

{

dx += sign * delta;

b = normal(dx);

dy = height * (b + a);

a = b;

result += dy;

} while (a > 0.001);

// two-tailed test

return result * 2;

}

41

References

[1] BioID AG. Bioid face database. http://www.bioid.com/index.php?q=

downloads/software/bioid-face-database.html. 23

[2] ASUS. Xtion pro. http://www.asus.com/Multimedia/Xtion_PRO/. 3

[3] powered by PmWiki Enlighten theme originally by styleshout, adapted by

David Gilbert. Discrete integration. http://calculus.seas.upenn.edu/

?n=Main.DiscreteIntegration. vi, 15

[4] Google. Atap project tango. https://www.google.com/atap/

projecttango/. 4

[5] D.W. Hansen and Qiang Ji. In the eye of the beholder: A survey of models

for eyes and gaze. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 32(3):478 – 500, 2010. 4

[6] Kyung Nam Kim and R.S. Ramakrishna. Vision-based eye-gaze tracking

for human computer interface. Systems, Man, and Cybernetics, 1999. IEEE

SMC ’99 Conference Proceedings. 1999 IEEE International Conference on,

2:324 – 329, 1999. 4

[7] R. Kothari and J.L. Mitchell. Detection of eye locations in unconstrained vi-

sual images. Image Processing, 1996. Proceedings., International Conference

on, 3:519 – 522, 1996. 4

[8] Microsoft. Kinect for windows. http://www.microsoft.com/en-us/

kinectforwindows/. 6

[9] Occipital. Structure sensor. http://structure.io/. 3

42

http://www.bioid.com/index.php?q=downloads/software/bioid-face-database.html
http://www.bioid.com/index.php?q=downloads/software/bioid-face-database.html
http://www.asus.com/Multimedia/Xtion_PRO/
http://calculus.seas.upenn.edu/?n=Main.DiscreteIntegration
http://calculus.seas.upenn.edu/?n=Main.DiscreteIntegration
https://www.google.com/atap/projecttango/
https://www.google.com/atap/projecttango/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://structure.io/

REFERENCES

[10] M.J.T. Reinders, R.W.C. Koch, and J.J. Gerbrands. Locating facial features

in image sequences using neural networks. Automatic Face and Gesture

Recognition, 1996., Proceedings of the Second International Conference on,

pages 230 – 235, 1996. 5

[11] Fabian Timm and Erhardt Barth. Accurate eye centre localisation by means

of gradients. Proceedings of the Int. Conference on Computer Theory and

Applications (VISAPP), 1:125 – 130, 2011. 8

[12] Geoffrey Underwood. Cognitive processes in eye guidance. Oxford University

Press, 2005. 2

[13] R. Valenti and T. Gevers. Accurate eye center location and tracking using

isophote curvature. Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1 – 8, 2008. 5

[14] WebAIM. Motor disabilities - assistive technologies. http://webaim.org/

articles/motor/assistive. 1

[15] wikipedia. Normal distribution. http://en.wikipedia.org/wiki/Normal_

distribution. vi, 13

[16] A.L. Yuille, D.S. Cohen, and P.W. Hallinan. Feature extraction from faces us-

ing deformable templates. Computer Vision and Pattern Recognition, 1989.

Proceedings CVPR ’89., IEEE Computer Society Conference on, pages 104

– 109, 1989. 4

43

http://webaim.org/articles/motor/assistive
http://webaim.org/articles/motor/assistive
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution

	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Related work
	2.1 Potential of this project
	2.2 Current iris detection methods

	3 System design
	3.1 Sensor input layer
	3.2 Motion detection layer
	3.2.1 Iris detection method
	3.2.2 Calibration method

	4 System features
	5 Implementation
	5.1 Sensor input layer
	5.2 Motion detection layer
	5.2.1 Calibration
	5.2.2 Iris detection method

	6 Experimental results
	6.1 Result of iris detection method
	6.2 Compare to the state of art

	7 Conclusions
	8 Future work
	Appendix
	References

