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Precipitation prediction is a popular topic in the field of weather forecasting, as it
provides many benefits for various occupations. For example, farmers can use rain-
fall prediction to plan crop planting and irrigation, thus maximizing rainfall usage
and improving yield and quality in agriculture. Additionally, precipitation predic-
tion can aid in disaster prevention and reduction efforts by enabling authorities to
take early action to reduce the harm of natural disasters such as floods and land-
slides. Several commonly used methods for precipitation prediction exist, includ-
ing the time series method, Bayesian method, and artificial neural network method.
Each of these methods has its advantages and disadvantages that need to be im-
proved upon. For instance, the time series method processes precipitation data in-
dividually and does not incorporate other factors such as humidity or wind speed,
potentially missing useful information. Additionally, this method is sensitive to data
noise and outliers, requiring complex data preprocessing and filtering. On the other
hand, the Bayesian method relies heavily on model assumptions and prior distri-
bution choices, which can significantly impact predicted results. Furthermore, the
predictive power of this method may be weak for cases with few data samples or
insufficient prior knowledge. Lastly, the artificial neural network method requires a
large number of parameters and lacks interpretability, making it challenging to ex-
plain the reasoning behind the results. In this article, we introduce the functional
neural network (FuncNN) as a potential solution to these problems. The FuncNN
method is capable of handling multi-covariates, eliminating the need to find a suit-
able prior distribution as with the Bayesian method. Furthermore, FuncNN requires
fewer parameters than the artificial neural network method while also improving
interpretability.
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1 Introduction

With the development of technology in modern society, more and more data
can be recorded as a function in a time interval rather than as a scalar at a discrete
time point. With the increasing capability and complexity of data emerged a new
data type – functional data. Functional data abstract ordinary data into high di-
mensional data and apply it to a wider range of scenarios. This has boosted the
advent and rise of functional data analysis (FDA) in recent years, which provides
statistical methodologies to deal with functional data. Many techniques in the mul-
tivariate analysis have been extended to FDA and there are more and more works
to perfect this field. In the book (Ramsay, Hooker, and Graves, 2009), he first intro-
duced some preliminaries about functional data including mean function, bivariate
function, and smoothing methods. After that, he covered a popular technique Func-
tional Principal Component Analysis (FPCA), which is not straightforward but can
be analogized with ordinary PCA. Finally, he put forward a functional linear model
and deduced three ways to estimate the functional coefficients using the least square
method. There are also methods from others to estimate such as the nonparamet-
ric method (Ferraty and View, 2006), and the partial least square approach (Preda,
Saporta, and Lévéder, 2007). Apart from the model building in functional data, there
are also techniques in the statistical test. Permutation t-test and permutation F-test
based on Bootstrap (Ramsay, Hooker, and Graves, 2009) can test whether the differ-
ence between two groups or models is significant. Later, Cuesta-Albertos et al.(2019)
proposed a goodness of fit on the functional linear model based on random projected
empirical processes. The functional data analysis theories system is being improved
year by year.

However, even though FDA has increased the complexity of the model from the
perspective of data and may have improved performance in some scenarios, it is
still mostly related to the linear model nowadays and could not explain some intri-
cate relation between response and covariates. Thanks to the development of neural
networks and the capability of networks to figure out intricate relations, we can com-
bine neural networks and functional data to analyze complicated problems. Several
works following the idea proposed different methods to realize this combination.
Thind et al (2022) proposed a framework named FuncNN dealing with functional
data with a neural network. It approximates infinite dimensional functional data
using basis expansion with a prior basis and a number of bases. Then it takes the
inner product of functional covariates and bases as input of the neural network and
implements the following layers the same as the traditional one. However, a prior
may greatly influence the performance of a model. AdaNN (Yao, Mueller & Wang,
2021) proposes an adaptive basis layer instead of a fixed and given basis expansion.
It learns the bases layer through an end-to-end pattern and the other parts of AdaNN
are similar to FuncNN.

Functional data analysis could be employed in many fields including air qual-
ity analysis, medical images, and even network service management. In their work
(Martínez et al, 2014), they applied functional data analysis to detect outliers in air
quality samples and compared the results from functional data analysis and classi-
cal methods. A shift-invariant model (Heinrichs, Heim & Weber, 2023) provides a
method for the classification of electroencephalography (EEG) data, a popular field
of research in brain science using functional data analysis. It combines functional
data analysis and convolutional neural networks to classify the medical images of
brains from EEG data. In addition, functional data analysis could also be network
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management. Perdices et al (2021) characterized network services times series us-
ing functional clustering, augmented by autoencoder neural networks to improve
the results. They exemplified the application in real cases and showed functional
data analysis and neural networks are complementary. These applications in real
scenarios represent the wide use and power of functional data analysis with neural
networks.

In this project, we first review methods from Ramsay et al (2009), compare their
methods with the traditional multivariate method, and apply those methods to real
data experiments. A by-product when comparing is a functional linear regression
method called the functional score regression, which considers PCA on a multivari-
ate perspective together with a functional linear model instead of FPCA with func-
tional principal component regression.

The rest of this project is organized as follows. Section 2 reviews those theories
in FDA and Functional neural networks (Thind, Multani, and Cao, 2022). In Section
3, we collect data from the real scenario, implement the models in the data and com-
pare the results of the models. Finally, we make a summary in Section 4, discussing
the experiment and further work that need to be done.

2 Materials and methods

2.1 Methodologies

In this section, we introduce the theory of this experiment. Figure 2.1 goes through
the procedures of this experiment.

Raw data

PCA Smooth

Smooth

FLM

FLM

FuncNN

Regression

Prediction

Regression

Prediction

Regression

Prediction

FIGURE 2.1: Flow chart for the whole procedure

In our work, we first smooth the data by some basis function expansion and obtain
functional data. Then we perform some preprocesses on those functional data point-
wise. Apart from these basic preprocesses, a novel technique called Functional Prin-
cipal Component Analysis (FPCA) is introduced and we also derive a new method
named Functional Score Method. The upper panel shows the procedures of building
a functional model, while the lower panel is the path that Functional Score Method
goes through. Finally, we applied prepared data into a functional linear model and
also a functional neural network. In addition, we compare the differences between
functional models and their traditional models.
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2.2 Data Smoothing

Since the original data we got are discrete, to analyze with functional data, we need
to transform those data into a functional form, which is called smoothing. The pur-
pose of data smoothing is trying to find a function that the data exactly follow.
Smoothing can reduce noise and unnecessary details in the data, to better reveal
the overall trend and pattern of the data. There have been several methods for data
smoothing, including basis expansion and the nonparametric kernel method. Most
of the works developed on functional data analysis using the method of basis expan-
sion, as we do later. However, there are some precautions when we use basis expan-
sion data smoothing. It assumes that we can find a finite number of basis functions
to span the space of the true function we aim to approximate. While it may not be
always true, since the function may be infinite-dimensional. We accept this assump-
tion to adapt to further theories. For basis expansion data smoothing, functional
data is usually expressed as a linear combination of basis functions, which have the
following form,

x(t) =
K

∑
k=1

ckϕk(t) = c′ϕ(t), (2.1)

where c is the coefficient vector and ϕ(t) is the vector of basis functions. Fourier
Series and B-spline are two of the most commonly used basis types. We use the
Fourier Series in the following since the Fourier Seris can extract cycle patterns in
periodical data (Henderson, B. 2006). The Fourier Series functions are shown as
follows:

ϕ1(t) = 1
ϕ2(t) = sin(ωt)
ϕ3(t) = cos(ωt)
ϕ4(t) = sin(2ωt)
ϕ5(t) = cos(2ωt)

...
where ω = 2π/T.

The basis type and number of basis functions are always decided subjectively, we
can estimate the coefficients by minimizing the following,

SSE (x) =
n

∑
j

[
yj − x

(
tj
)]2 , (2.2)

where yj is the observed value at time tj and x(tj) is the smoothed data. After plug-
ging function 2.1 into 2.2 we have,

SSE (c) =
n

∑
j

[
yj −

K

∑
k

ckϕk
(
tj
)]2

=
n

∑
j

[
yj −ϕ

(
tj
)′
c
]2

.

ĉ can be solved by least square method:

ĉ =
(
Φ′Φ

)−1
Φ′y.

The dimension of ϕ is n × k and the dimension of y is n × 1, where n is the number
of observations and k is the number of basis functions.
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Similar to the traditional linear model, we could also consider adding a penalty
to the loss function shown in equation 2.2, trying to avoid overfitting:

F (c) = ∑
j

[
yj − x

(
tj
)]2

+ λ
∫

[Lx (t)]2 dt,

where Lx(t) is a linear differential operator on x(t) and λ denotes the parameter of
penalty.

We choose L = ω2D + D3 since we are working on a group of periodical data
with a known period, and this penalty can substantially penalize the high-order
terms in the Fourier Series. We can see for any periodical data aj sin(jωt)+ bj cos(jωt)
with known frequency ω, its linear differential operator:

L
[
aj sin (jωt) + bj cos (jωt)

]
= ω2 j

(
1 − j2

) [
aj cos (jωt)− bj sin (jωt)

]
.

We observe that when j = 1, there is no penalization. As j increase, the increase of
penalty is proportional to j2(1− j2)2 which is very large. Thus, the penalty constricts
the form into a sin(ωt) + b cos(ωt). For the choice of λ, it can be determined by Gen-
eralized Cross Validation (GCV):

GCV (λ) =

(
n

n − d f (λ)

)(
SSE

n − d f (λ)

)
.

For a fixed λ, we can get the following new loss function,

F (c) = ∑
j

[
yj −ϕ′ (tj

)
c
]2

+ λc′[Lϕ(t)Lϕ′(t)dt]c.

and then ĉ and d f (λ) can be calculated by the following:

set R =
∫

Lϕ (t) Lϕ′ (t) dt,

then we can solve by the least square method:

ĉ =
(
Φ′Φ + λR

)−1
Φ′y.

If we design the hat matrix as:

H = Φ
(
Φ′Φ + λR

)−1
Φ′,

then the degree of freedom as a function of λ can be calculated by:

d f (λ) = trace [H (λ)] .

Finally, we introduce how we select the number of basis functions in the real
precipitation data. While many works decide the number of basis functions sub-
jectively, we determine the numbers according to some criterion. Too many basis
functions may overfit the data, while too less could lose the information of the true
function. Here, we choose a combination of AIC (Akaike Information Criterion) and
BIC (Bayesian Information Criterion), their average, to select the number of basis
functions. AIC and BIC are two indices that penalize the number of basis functions,
which can help to avoid overfitting, so it can help us to choose the number of basis
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functions. However, in our data set, the number of basis functions of those five co-
variates can not be selected by AIC or BIC independently (e.g., the AIC or BIC for
one of the covariates monotone increase or decrease), so we use the value of AIC +
BIC as a criterion for the number of basis functions choosing problem.

AIC = 2k + n ln (RSS/n),

BIC = ln (n)k + n ln (RSS/n).

2.3 Preprocessing for Functional Data

After smoothing the data, the following procedures are similar to the procedures of
the traditional model. We also do data preprocessing on functional data. Similar to
the univariate version, we have sample mean function and sample variance function
pointwise. Sample mean function for functional data defined as:

x̄ (t) = N−1 ∑
i

xi (t),

where each xi(t) is a sample curve after smoothing, and N is the number of curves.
Sample variance function for functional data:

s (t) = (N − 1)−1 ∑
i
[xi (t)− x̄ (t)]2 .

Similarly, each xi(t) is a sample curve after smoothing and N is the number of
curves. After getting the sample mean function x̄(t) and sample variance function
s(t), we can scale the functional data point wisely,

x′i (t) =
xi (t)− x̄ (t)√

s (t)
.

2.4 Functional Principal Components Analysis

The sample mean function and sample variance function are so straightforward that
we can derive them from the conventional model point wisely. However, things
seem quite different in the principal component analysis for functional data. For the
conventional dataset, we can use a covariance matrix of covariates and decompose
it to find eigenvectors. While the sample variance function defined before cannot
be used to figure out eigenvectors. Instead, we need the covariate function of func-
tional data and fortunately, it can be defined as a bivariate covariance function:

v (s, t) = (N − 1)−1 ∑
i
[xi (s)− x̄ (s)] [xi (t)− x̄ (t)] .

Then the problem becomes how to decompose this covariance function since the
dimension of this function is infinite. It is complicated to find eigenfunction in
this way. Thanks to Ramsay et al. (2009), have developed a way to calculate the
eigenfunctions from the other perspective. For conventional PCA model, suppose
xi ∈ Rp, i = 1, . . . , n are n observations with p covariates after standardization, then
we find eigenvector ξ ∈ Rp such that the variance of the inner product of xi and ξ
are maximized, namely solve eigenvector:
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ξ = arg max
ξ

∑
i
(xi · ξ)2 , subject to ξ′ξ = 1.

Then the result eigenvector ξ is the first principal component, and the other princi-
pal components are calculated similarly with additional constraints such that they
are orthogonal to all the principal components found before. Borrowing this idea to
functional principal component analysis, we expand observations xi to functional
observations xi(t), define probe function ξi(t) or eigenfunction as the role of eigen-
vector ξ, and realize inner product on xi(t) and ξi(t) by integral

∫
T xi (t) ξi (t)dt

hence we aim to find a function such that:

ξ (t) = arg max
ξ

∑
i
[
∫

xi (t) ξ (t)dt]2, subject to
∫

ξ(t)2dt = 1.

In the same way, we can find other eigenfunctions with orthogonality constrain:∫
ξi (t) ξ j (t) dt = 0.

Here we only outline the basic idea to solve the eigenfunctions, but details to
solve the problem especially how to find the function in an infinite dimensional
space are not included. More details about the development and methods of FPCA
are summarized by Wang, Chiou, and Muller (2015).

Although the procedures to figure out eigenfunctions or eigenvectors are simi-
lar, there are some differences between these two methods. PCA essentially takes
a linear combination of covariates and extracts new covariates to do the dimension
reduction. However, FPCA is not a dimension-reduction method for functional co-
variates. Instead, it can be used within only one functional covariate and output
several eigenfunctions. These eigenfunctions, which may or may not be linear com-
binations of basis functions, can be treated as bases of sample space of that functional
covariate. FPCA only explains the variance of samples within one functional covari-
ate, it performs analysis on each functional covariate independently and was not
extended to a linear combination of functional covariates.

2.5 Principal Component Score Function

To apply the idea of PCA to functional data and solve the problem of multicollinear-
ity, we propose a new method using PCA on functional data. We aim to find a
function that we call score function: a linear combination of functional covariates
such that:

sc (t) =
p

∑
j=1

αjx(j)(t).

We mark different functional covariates with their superscripts, that is, x(j) repre-
sents j − th functional covariates. Then the problem becomes how to figure out the
coefficient α, and what the score function means. We use the eigenvector of data
matrix X as coefficient α, where X is an n × p matrix whose n rows represent n
observed times, and p columns represent p covariates. By using traditional PCA,
we can solve out the eigenvector and hence α. Then for any given t′ ∈ T , we can
calculate sc(t′) by α and x(j)(t′). We see that sc(t) is a function of t and its value is
derived from scores of principal components, thus we called it the score function.
Notice that scores are obtained by eigenvector which maximizes the variance of the
scores derived from p covariates, then the first score function can be interpreted as
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the function varies most and explains the most variance of p covariates. We use this
score function as a new functional covariate to replace the original ones. In addition,
we can find out more score functions through eigenvectors from PCA.

2.6 Functional Linear Model with Scalar Response

The classical linear model gets the following form,

yi =
p

∑
j=0

xijβ j + ϵi, i = 1, . . . , N

Now we assume that the response y is a scalar and change at least one of the covari-
ates into functional data, i.e., from xi = (xi1, . . . , xip) to xi(t). We can choose different
time points e.g., t1, . . . , tq to get a model:

yi = α0 +
q

∑
j=1

xi
(
tj
)

β j + ϵi.

If we select the time points finer enough, we can get a functional linear model as,

yi = α0 +
∫

xi (t) β (t) dt + ϵi.

More functional covariates can be added to the model as well as several scalar co-
variates. Generally, for an FLM model with p scalar covariates and q functional
covariates, we have the following form,

yi = α0 + z′
iα+

q

∑
j=1

∫
xij (t) β j (t) dt + ϵi,

where zi = (zi1, . . . , zip) are the scalar covariates.
We aim to find coefficients β(t) and α. For the traditional scalar linear model,

to estimate the coefficients, we can find the optimal solution to the loss function
which is a function of scalar coefficients. However, for the functional linear model,
it is not easy to estimate the optimal solution since some coefficients are functional
and infinite dimensional. The loss function is expressed as f (β(t),α) which is not
easy to find the derivatives and also the solutions. Thanks to the research in func-
tional data analysis, there are ways to deal with the problem that function is infinite-
dimensional. The basic idea is that assume functions can be approximated properly
by a finite number of basis function expansions. From Ramsay et al.(2009), they ex-
press β(t) into linear combinations of basis functions, so that we can retrieve β(t)
by solving

β (t) =
K

∑
k

ckϕk (t) = c′ϕ (t) ,

where ϕ is a finite vector of basic functions. Then the loss function is expressed as a
function of scalar inputs c and then the problem becomes finding out the coefficients
vector c which optimizes the loss function.

To get the coefficients, similar to the classical linear model but apply the inner
product to functional data, we aim to minimize the sum of square error (SSE) as the
following term,
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SSE (α, β) =
N

∑
i=1

[
yi − z′

iα−
q

∑
j=1

∫
xij (t) β j (t) dt

]2

=
N

∑
i=1

[
yi − z′

iα−
q

∑
j=1

cij

∫
xij (t) ϕj (t) dt

]2

,

where ϕj is basis function expansion of β j, j = 1, . . . , q. To describe the solution more
clearly, we express variables in matrix form. Define design matrix Z as,

Z =

z′1
∫

x11 (t)Φ1 (t) dt . . .
∫

x1q (t)Φq (t) dt
...

. . .
...

z′n
∫

xn1 (t)Φ1 (t) dt . . .
∫

xnq (t)Φq (t) dt


where Φj, j = 1, . . . , q, is the vector of basis expansion, and here z′

i , i = 1, . . . , n has
its first element as 1 representing the intercept term.Define vector y = [y1 · · · yn]′,

and b =

[
α
c

]
, thus we have model:

y = Zb+ ϵ,

and the SSE:
(y −Zb)′(y −Zb),

which can be solved by the least square method the same as the classical linear
model. Then we can solve the coefficient matrix (including α and c) easily:

b̂ =
(
Z ′Z

)−1
Z ′y.

Similar to smoothing, a functional linear model could also have penalties. Here we
apply the Ridge penalty on functional covariates. The loss function with penalty is
defined as:

PENSSEλ (α,β) = ∑
[

yi − z′iα − ∑
j

∫
xij (t) β j (t) dt

]2

+λ

(∫ [
Lβ′ (t) Lβ(t)

]2 dt
)

,

where L is the linear differential operator, and for the ridge method, it specializes
as an identity operator. It is still the same for scalar covariates with its L2 norm. λ
can be specified as different values for each covariate including functional and scalar
ones. To solve the coefficients, we have the penalty matrix:

λ0 I . . . . . . . . .
0 λ1R1 . . . 0
...

...
. . .

...
0 0 . . . λqRq

 ,

where Rj is the penalty matrix corresponding to the j − th covariate (j = 1, . . . , q) :

Rj =
∫

ϕj (t)ϕj
′ (t) dt.
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Then we can solve out the coefficient by normal function and the solution given by:

b̂ =
(
Z ′Z +R(λ

)
)
−1

Z ′y.

2.7 Functional Score Regression

As said before, FPCA only works with each functional covariate, to combine those
functional covariates linearly, we propose the principal component score function
method in Section 2.5. Functional score regression (FSR) is similar to a functional
linear model and the only difference is that FSR replaces the original functional co-
variates of FLM with several principal component score functions obtained by PCA
on multivariate data. To distinguish with FPCA regression, we called this method
functional score regression (FSR).

2.8 Functional Linear Model with Functional Response

The functional linear model can also deal with the functional response using a con-
current model that is estimating functional response by the covariates at the same
time points. The model can be described as:

y(t) = Z (t)β(t) + ϵ(t),

where y(t) is a functional vector with length N containing N functional response
and Z(t) is a functional covariate matrix with dimension N × p. The loss function is
similar but only replaces the square term with the inner product on the vector. Then
solve the regression by normal equations:[∫

Θ′ (t)Z ′ (t)Z (t)Θ (t) dt +R (λ)

]2

b̂ =

[∫
Θ′ (t)Z ′ (t) y (t) dt

]
.

where Θ(t) is the basis function matrix of functional weight β(t), and b̂ is the corre-
sponding coefficient scalar vector.

2.9 Functional Neural Networks with Scalar Response

Functional Neural Networks got lots of similarities to Artificial Neural Networks
(ANN), so we will first illustrate the implementation methods of ANN, and then
generalize it to the Functional Neural Network.

An ANN is made up of neurons and their corresponding weights. It consists of
some hidden layers, which contain several neurons. Each neuron in the layers is the
output value of an activation function with a linear combination of previous neurons
as input. More precisely, we can formulate as

v(i) = g
(
W (i)v(i−1) + b(i)

)
,

where v(i) is the neuron vector of i − th hidden layer (original input is denoted as
v(0)), W (i) is the weight matrix from layer i − 1 to layer i, and b(i) is a constant vector
referred as bias. g(·) is an activation function, which provides nonlinear transforma-
tion and can better describe the nonlinear model.

The training process of the network most frequently uses the backpropagation
algorithm (Rumelhart, Hinton, and Williams, 1985). The algorithm first initializes
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the weights of the network and then spreads forward to calculate values in the out-
put layer. After that is the backward process which updates weights by the gradient
of the loss function calculated from the output value in the forward process. Repeat
the forward and backward process until the loss decrement is small or some other
criteria are met.

If we do not consider functional data, and treat all the observations of functional
data as input directly into ANN. This kind of network is easy to understand but with
some disadvantages. The first one is that the dimension may be large, however, this
may not be severe for a network. The second one is about the interconnection within
a functional covariate. If the real function is continuous, any two points infinitely
close to each other would have value within a small neighborhood. While in prac-
tice, we only obtain finite data points and directly inputting them into the network
may not conform to the characteristic. The third one is related to the interpretation
of weight function. In this network, we do not care about the feature of the weight
function whether it is continuous or not. Since the update process only considers the
weight separately instead of treating them as a whole function. Hence, it may not
ensure the feature of function such as continuity and smoothness.

FIGURE 2.2: Traditional neural network structure

Then we introduce functional data into the network. The first idea is that we can
treat all data from one covariate together and share the same weight. Every neuron
in the input layer records a single value at a time point of a functional covariate. The
neurons in the red box represent one functional covariate, and each neuron in the
next layer has only one shared weight which is a scalar. This kind of network does
treat the input data as a whole but still does not explain the weight as functional. It
only uses one value to weigh a functional input, which may not be accurate enough.
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FIGURE 2.3: Functional neural network with shared weight

The second network is to consider all the neurons as functional data rather than
a scalar (scalar neuron can be treated as a constant function). Then the following pic-
ture shows the structure. The first layer is the input layer containing functional and
scalar inputs. The weights are shown in blue segments which mean scalar weights.
Since the linear combination of functions is still a function, then the activation func-
tion shown in green should be a map from function to function which is complicated.
Then the output can be certainly functional. The weights are also scalar, while the
neurons are all functional. It seems more general but is harder to implement since
the activation function becomes more complicated.

𝑥1(𝑡)

𝑥2(𝑡)

𝑧𝑞

𝑣1(𝑡)

𝑣2(𝑡)

𝑣1(𝑡)

𝑣2(𝑡)

𝑦(𝑡)

FIGURE 2.4: Functional neural network with functional neurons

The last idea comes from Thind et al. (2022), who call their method FuncNN
and do some transformation of functional data into the first layer. The graph below
shows rough ideas of his work. Neurons in the first column colored in red represent
functional covariates and all the others that are scalars are shown in blue. In this
network, the weights colored in orange are functional and can be expressed as basis
expansion. Multiplication of functional covariates and their corresponding weight
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functions is done by the inner product of two functions. Now that the inner product
produces scalar outputs and so are the later part, which means that we can apply
the rules of ANN to the later part of this network.

𝑥1(𝑡)

𝑥2(𝑡)

𝑧𝑞

𝑣1

𝑣2

𝑣1

𝑣2

𝑦

FIGURE 2.5: Functional neural network with functional weight

We can formulate the neurons in the first hidden layer by:

v(1)i = g
( K

∑
k=1

∫
T

βij(t)xk(t)dt +
J

∑
j=1

w(1)
ij zj + b(1)i

)
,

where βik(t) is the weight function, xk(t) and zj represent functional and scalar co-
variates respectively, and g(·) is an activation function.

The only difference between ANN and FuncNN is that FuncNN makes some
transformation of functional data in the first layer and can use several scalars to
represent weight functions. Details about the transformation from each functional
covariate to different neurons in the first hidden layer and relevant weight functions
are shown in the following Figure 2.6.

𝑐𝑘

𝑐2

𝑐1
𝑣𝑗

𝑥𝑖 𝑡 ⋅ 𝜙1(𝑡)

𝑥𝑖 𝑡 ⋅ 𝜙2(𝑡)

𝑥𝑖 𝑡 ⋅ 𝜙𝑘(𝑡)

𝑥𝑖(𝑡)
𝛽𝑗𝑖 𝑡 = ∑𝑐𝑘𝜙𝑘 𝑡

FIGURE 2.6: Details implemented in FuncNN

From this figure, we can have a more specific view of how the weight function
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β ji(t) is obtained and the connection between ANN and FuncNN. Given hyperpa-
rameter k and basic functions ϕ′, the weight function can be spanned by

β ji (t) = ∑ ckϕk (t) .

Hence, the inner product of two functions can be expressed by:

xi (t) · β ji (t) = ∑ ckxi (t) · ϕk,

where xi(t) · ϕk(t) are the input neurons in the first layer of ANN and coefficients ck
correspond to weight wik in ANN. Then we can show the formula of neurons in the
first hidden layer in terms of basis functions ϕk:

v(1)i = g
( J

∑
j=1

K

∑
k=1

∫
T

ϕijk(t)xj(t)dt +
J

∑
j=1

w(1)
ij zj + b(1)i

)
.

After applying the rules of ANN, we can figure out coefficients and hence weight
functions through basis expansion.

This kind of network has treated functional input as a whole and can ensure
some properties of weight functions by assuming basic functions. It is also easy to
implement since most of the network is the same as the traditional ANN model.
What’s more, it seems surprising that FuncNN uses fewer parameters than ANN
that directly takes all observed data as input. Suppose xi(t) has n observed time
points, and we set weight function of FuncNN is spanned by k basic functions. Then
for ANN, the number of input neurons will be n, while for FuncNN, the number will
be only k according to the above, where n should be larger than k. Thus, FuncNN
appears to be more reasonable and efficient to deal with functional data.

As said before, most of the rules in ANN can also be adapted into FuncNN.
We then consider some methods to complete the FuncNN model. For the training
process, the backpropagation algorithm is still the most frequently used technique,
and it is also applied to FuncNN. Furthermore, overfitting is also a common problem
in neural network models since the number of parameters of the network seems not
easy to determine. Thanks to the works on neural networks, two methods dealing
with overfitting problems, drop out method (Srivastava et al., 2014) and early stop
(Yao, Rosasco, and Caponnetto, 2007) method, have been utilized in FuncNN. More
details about these two methods will be explained later in Section 3.

2.10 FuncNN with Functional Response

FuncNN can also deal with the functional response and its method is quite straight-
forward if we know how to deal with functional covariates. It still expresses weight
functions to functional response as basis functions expansion, takes the inner prod-
uct of response and basis functions as output neurons, trains the network, and finally
output coefficients indicating the weight functions.

3 Results and Comparison

In this section, we apply the theories above to a real scene using weather-related
data from Macao SAR. We first briefly describe the data, and the methods of prepro-
cessing data and then specify the model’s hyperparameters we are going to build.
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Finally, we compare the results from different models including Functional Linear
Model, Functional Score Model, and Functional Neural Network.

3.1 Data

We utilize 24 years of weather-related daily data from Macao SAR, China, ranging
from January 1, 1999, to December 31, 2022, download from Macau Meteorological
and Geophysical Bureau. The dataset comprises daily average temperature, daily
average relative humidity, daily average wind speed, daily average sea level pres-
sure, daily total sunshine duration, and daily average precipitation. Since there are
few days of rain in a year, having precipitation data is not suitable to be regarded as
functional data, we only consider daily average precipitation as a scalar response.
The primary objective of this project is to use daily average temperature, daily av-
erage relative humidity, daily average wind speed, daily average sea level pressure,
and daily total sunshine duration to conduct regression on yearly average precipi-
tation. What’s more, we also use those 5 functional covariates stated above, adding
yearly average precipitation at the current year as a scalar covariate, and predict the
yearly average precipitation for the next year.

3.2 Data Smoothing

For each of the five covariates, we determine the number of basic functions by find-
ing out the minimum value of AIC + BIC, and the corresponding number of basis is
the one we want. We first calculate the value of AIC + BIC in a wide but sparse range,
i.e., the basis number starts from 15 and ends at 365, while the gap equals 10. We will
find an interval that may include the minimum value of AIC + BIC from that sparse
interval, and further calculate the value of AIC + BIC on a dense interval, which got
50 points (50 different numbers of basis) with a gap equal to 2 (since Fourier basis
function usually contains sine and cosine, so each time we need to add 2 more basis
functions). The following graphs show the value of AIC + BIC corresponding to the
number of basis functions.

(a) (b)

FIGURE 3.1: The value of AIC + BIC corresponding to each log10(λ)
for Temperature

https://www.smg.gov.mo
https://www.smg.gov.mo
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(a) (b)

FIGURE 3.2: The value of AIC + BIC corresponding to each log10(λ)
for Pressure

(a) (b)

FIGURE 3.3: The value of AIC + BIC corresponding to each log10(λ)
for Humidity

(a) (b)

FIGURE 3.4: The value of AIC + BIC corresponding to each log10(λ)
for Wind
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(a) (b)

FIGURE 3.5: The value of AIC + BIC corresponding to each log10(λ)
for Sun

Next, for each covariate, we add a harmonic acceleration linear differential oper-
ator L = ω2D+D3, where ω = 2π/365, and get F(c) = ∑j[yj − x(tj)]

2 +λ
∫
[Lx(t)]2dt.

For choosing the value of λ, we set a wide range for λ, we calculate the GCV value
for each λ. Then, we select the λ with the minimum GCV value.

The following graphs show the GCV value for each covariate corresponding to
log10(λ).

FIGURE 3.6: The GCV value corresponding to each log10(λ) for Tem-
perature
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FIGURE 3.7: The GCV value corresponding to each log10(λ) for Pres-
sure

FIGURE 3.8: The GCV value corresponding to each log10(λ) for Hu-
midity

FIGURE 3.9: The GCV value corresponding to each log10(λ) for Wind
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FIGURE 3.10: The GCV value corresponding to each log10(λ) for Sun

Eventually, when we get the number of basis functions and λ for each covariate,
we use the function ”smooth.basis” in package ” f da” in R to get the functional data
object.

3.3 Functional Linear Model with the Original Five Covariates to Scalar
Response

In this part, we fit yearly average precipitation y (a scalar response) by using all the
other 5 covariates (5 functional covariates).

yi = α0 +
5

∑
j=1

∫
xij (t) β j (t) dt + ϵi,

where yi is the average precipitation for each year and the coefficient (weight) func-
tions:

β (t) =
K

∑
k

ckϕk (t) = c′ϕ (t) .

In the beginning, the data set was divided into a training set and a test set randomly,
the training set contains the data within 20 years while the test set involves data
within the rest 4 years.

Additionally, 5-fold cross-validation is used on the training set to select the num-
ber of basis functions for each β j(t), j = 1, . . . , 5. The number of basis functions
corresponding to the minimum mean squared prediction error is used in the model,

MSPE =
B

∑
b=1

N

∑
l∈Sb

(
ŷ(−b) − yl

)2

N
,

where Sb is the b-th partition of the training data set and ŷ(−b), l ∈ Sb, is the predic-
tion in the set.

After confirming the number of basis functions for each β j(t), j = 1, . . . , 5, we
plug them into the whole training set to get a functional linear model, and at last,
test the model with the test set. R2 for the test set is an evaluation of the fit of the
model:
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R2 = 1 −
N

∑
l=1

(yl − ŷl)
2 /

N

∑
l=1

(yl − ȳ)2.

Notice that from Section 2, we can estimate coefficients b̂ by b̂ = (Z ′Z)−1
Z ′y, and

Z =

1
∫

x11 (t)Φ1 (t) dt . . .
∫

x1q (t)Φ5 (t) dt
...

. . .
...

1
∫

xn1 (t)Φ1 (t) dt . . .
∫

xnq (t)Φ5 (t) dt

 .

However, if we simply use the FLM model without a penalty term, the matrix
Z ′Zwill not be invertible if we have more than 3 basis functions for each β j (t) , j =

1, . . . , 5, thus we cannot get b̂ = (Z ′Z)−1
Z ′y. The reason why this issue occurs

is that we only got 16 functional data objects in our training set, while there are 5
covariates. If we let β j (t) for each covariate to be spanned by more than 3 basis
functions, the matrix Z ′Z will be a singular matrix. And of course, the performance
for this FLM model is bad since 3 basis functions are not enough for each β j (t).

To solve this problem, we add a penalty term while solving the least square prob-
lem. Thus, the estimator by least square with ridge penalty as shown in Section 2 is
given by:

b̂ =
(
Z ′Z +R(λ)

)−1
Z ′y,

where ridge penalty matrix R(λ) is

R =


1 . . . . . . . . .
0 λ1R1 . . . 0
...

...
. . .

...
0 0 . . . λ5R5

 .

Eventually, this newly calculated b̂ is used for the current yearly average precipita-
tion regression.

Similarly, we construct a prediction model aimed to get the yearly average pre-
cipitation for the next year. The only thing different from the previous procedure is
adding the yearly average precipitation in the current year as a new scalar covariate.
So, our corresponding formula, matrix Z and R changed into the following forms,

yi = α0 + α1zi +
5

∑
j=1

∫
xij (t) β j (t) dt + ϵi,

Z =

 1 z1
∫

x11 (t)Φ1 (t) dt . . .
∫

x1q (t)Φ5 (t) dt
...

. . .
...

1 zn
∫

xn1 (t)Φ1 (t) dt . . .
∫

xnq (t)Φ5 (t) dt

 ,

R =


I2×2 . . . . . . . . .

0 λ1R1 . . . 0
...

...
. . .

...
0 0 . . . λ5R5

 .

After the same calculation, we can get b̂ and make the prediction. The reason why
we do this additional prediction is stated in Section 3.6.
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3.4 Functional Score Regression with Three Principal Components to Scalar
Response

The only difference between this section (3.4) to the last section (3.3) is that we use
the newly generated 3 principal components to replace the original 5 covariates since
it can ease the multicollinearity problem among the covariates.

First of all, we do principal component analysis among the 5 covariates each year.
The total variance explained in each year by different PCs is shown in Figure 3.11.
We found that the first 3 principal components for all 24 years can explain around
95% of the variance, significantly greater than the first two components while only
slightly less than the first four components, that’s why we use the scores of those 3
PCs as new covariates.

FIGURE 3.11: Variance explained by the first 4 PCs for all 24 years

After getting 3 PCs for all 24 years, we smooth the scores of PCs obtaining score
functions, and we conduct a penalized FLM with those smoothed data. After doing
a regression on the current year, we also perform a prediction for the next year as in
Section 3.3.

3.5 Functional Neural Networks to Scalar Response

For Functional Neural Networks, we can directly put the smoothed data into the
model using package ” f un. f it” in R, and select different hyperparameters. In this
specific example, we tune the model with different numbers of bases for the func-
tional coefficients, different activation functions like sigmoid, ReLU, LeakyReLU,
tanh, and so on, different numbers of hidden layers, different numbers of neurons
in each hidden layer, as well as different criteria to avoid overfitting (including the
dropout and early stop).

Overfitting occurs when a model learns to fit the training data too closely, result-
ing in poor generalization of new data. To avoid overfitting, we apply the following
two methods: dropout (Srivastava et al., 2014) and early stop (Yao, Rosasco, and
Caponnetto, 2007).

Dropout: Dropout addresses overfitting by randomly "dropping out" (setting to
zero) some neurons during training. This forces the network to learn more
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robust features, as no single neuron can rely on the presence of another neuron
to make predictions. During training, each neuron in the network has a prob-
ability p of being "dropped out." This means that the neuron’s output is set to
zero with probability p, or left unchanged with probability 1 − p. The value of
p is typically set between 0.1 and 0.5.

To implement this method, we generate a Bernoulli distribution with probabil-
ity p to get a set of (0,1) samples, the number of samples equals the number of
neurons in a hidden layer. If the neuron corresponds to 0, drop it, else remain
that neuron. The following 2 graphs show how dropout was implemented in
a one-hidden layer neural network.

1st Epoch Bernoulli sample: p = 0.5, (1,0,0,1)

Input

layer

hidden

layer

output

layer

2nd Epoch Bernoulli sample: p = 0.5, (0,1,0,1)

Input

layer

hidden

layer

output

layer

FIGURE 3.12: The principle of how dropout works

Early stop: The idea behind early stopping is to monitor the network’s performance
on a validation set during training and stop the training process once the vali-
dation error starts to increase, indicating that the network is starting to overfit
the training data.

In the beginning, the data set is separated into a training set and a validation
set randomly. As the network is trained, the training error generally decreases
over time, while the validation error initially decreases but then starts to in-
crease again. This is because the network starts to overfit the training data,
and the improvements in the training error do not generalize to new data.

Epoch

Error

Training Error

Validation Error

Early Stopping Epoch

FIGURE 3.13: The principle of how early stop works
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The early stopping point is indicated by the dashed line in the graph. This is
the point at which the validation error is at its minimum. At this point, the net-
work has achieved the best possible generalization performance on the valida-
tion set. Any further training would cause the network to overfit the training
data, resulting in worse generalization performance. Therefore, the training
process is stopped at the early stopping point, and the network parameters at
this point are used as the final trained model. This model has achieved the best
possible generalization performance on the validation set and can be used to
make predictions on new data.

The following graph shows the training error and validation error in each epoch,
and the early stop happened around 54 epochs.

FIGURE 3.14: An example of early stop

3.6 Autoregression Model

All the models introduced above try to describe response precipitation with covari-
ates data from the same year as the response. However, this kind of model may
not be useful in forecasting, and most of the time it is used to explain the relation
between response and covariates. Therefore, we also consider the model predicting
next year’s response using current year data including observed previous response
data. This is what we call the autoregression model (only for naming convenience
and has nothing to do with the AR model in time series), using previous years’
response to predict the following years’ response. Here we only consider autore-
gression on the previous year, namely adding the previous year’s precipitation data
as an additional scalar covariate into models. For each model, there are now five
functional covariates and one scalar covariate with a total of twenty-three years of
data. We will also display and compare the results for this model.

3.7 Results

In this subsection, we present the results of all the models stated above, choose
MSE, MSPE, and R2 as criteria, and give a brief comparison of different models.
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For the current year regression problem:

Training MSE MSPEcv Test MSE Test R2

FLM without penalty 0.20 — 4.07 -1.83
FLM with penalty 1.02 1.92 1.43 0.003

FSR 0.65 1.28 0.95 0.34
FuncNN 0.33 1.50 0.70 0.51

TABLE 3.1: Result for the current year regression problem

For the next year’s prediction problem (autoregression):

Training MSE MSPEcv Test MSE Test R2

FLM without penalty — — — —
FLM with penalty 1.09 0.89 1.73 -0.20

FSR 1.02 1.32 1.28 0.11
FuncNN 0.79 1.48 1.05 0.27

TABLE 3.2: Result for the next year prediction problem

From the above results, we can make the following conclusions:

a. Comparing the FLM with penalty term and without penalty term:

The FLM without penalty term can be overfitting (train MSE is much smaller
than test MSE) and adding a penalty term for the functional linear model can
ease overfitting, as well as decrease the test MSE and increase test R2, i.e.,
improve performance of the model. However, its test R2 is approximately 0,
which means the performance is still not good.

b. Comparing the FLM using the original 5 covariates and the FLM with 3 PCs:

Both two models add a penalty term, the test MSE of the FLM with PCs is lower
and the test R2 increased by 0.3, indicating the performance of FLM using PCs
is much better.

c. Comparing the FuncNN with all the other models:

The test MSE of the FuncNN is the lowest and its test R2 is the highest, which
means FuncNN performs best among all the models stated in this paper.

d. Comparing all the regression models for the current year and all the prediction
models for the next year (autoregression models):

The test MSE of the regression models is much smaller than the autoregression
models, and this result is different from the guess we had in section 3.6. We
suggest that maybe this data set is not suitable for the autoregression model.

4 Discussion

Functional data analysis has been a hot topic in recent years, and its wide adapt-
ability makes it worthwhile for further investigation. However, deep learning with
functional data analysis is still at its initial stage and more effort needs to be done
to complete the system of functional data analysis both in theories and applications.
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In our project, we first reviewed some important concepts of functional data anal-
ysis, comparing those in the traditional multivariate fields. These concepts include
techniques for smoothing, FPCA, and also functional linear models. A byproduct,
functional score regression which applies PCA on multivariate perspectives but re-
gression on a functional linear model, was introduced. Apart from the functional
linear model, we have also considered neural networks on functional data, putting
forward ideas to implement neural networks on functional data. After finishing the
reviews on concepts, we did apply those techniques in real data, trying to explain
average annual precipitation in Macau SAR with five functional covariates includ-
ing daily average temperature, daily average relative humidity, daily average wind
speed, daily average sea level pressure, and daily total sunshine duration. Compar-
ing the results of the models, we figured out that FuncNN performed best in this
data set. We guessed the reason is that the relation between precipitation and those
five covariates may not be linear and neural network has some advantages in deal-
ing with nonlinear relations than linear models. From the result, we see the excellent
performance of neural networks on functional data, even though functional neural
network analysis is still in its infancy stage. It is worthy of developing the field of
functional neural networks.

During our experiment, we did also discover something worth thinking about.
First of all, the performance of functional data analysis may heavily depend on the
smoothing of functional data, while there are few formal criteria to choose the num-
ber of basic functions. Secondly, the collinearity of covariates may result in poor
performance of models but there are not enough methods to deal with this problem.
Thirdly, as far as we are concerned, there did not exist a normative significance test
of functional coefficients like those in multivariate analysis. Finally, the functional
neural network used here is essentially a method in scalar space, only performing
transformation from functional data into the first layer, remaining the hidden lay-
ers the same as traditional ones. To apply to a wider range of scenarios, we shall
investigate neurons in functional space.

In summary, the experiment presented here first reviewed theories in functional
data analysis, introducing FLM and FuncNN, then implemented models in real data
sets, revealing some directions for further works. Functional data analysis is power-
ful, and it is necessary to perfect the system of analysis.
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