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Abstract

Nowadays, electronic devices are everywhere, people normally control

electronic devices using hands. However, the traditional interfaces

limit the physically disabled people to access. Therefore, we need

to develop a new kind of interface which is not only for the nor-

mal person, but also for the disabled people. This work presents a

video-based “hands-free” human-computer interface designed to of-

fer a friendly user experience and accessibility for everyone, including

disabilities. The interface automatically captures the movement of

users’ eyes with camera and helps them to accomplish some simple

tasks with computer by eyes and head rotation. At last, we show the

first prototype of the interface which is implemented by Kinect for

Windows.
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Chapter 1

Introduction

As so many new technologies have been developed, computers become more

important in our lives. We have smart phones, tablets, even smart-houses to-

day. Every day, we need computer to accomplish our works, receive the latest

information, entertainment, or communicate to each other. Currently, the most

general way to control a computer is through the keyboard and mouse. Moreover,

there are some new kinds of interfaces, such as touch screen, become a trend of

controlling electronic devices. However, no matter using keyboards, mouses, or

touch screens, people interact with computers or electronic devices still with their

hands. From a different point of view, most of the designs of interface are assumed

that all the users have hands, good fingers and can act normally. They do not

consider the disabled people whose hands are injured, paralyzed or even do not

have any hand. Especially in nowadays, electronic devices are all around us. If a

man can’t control these devices, he even is not able to take good care of himself.

For that reason, the main purpose of this paper is to develop a more user-friendly

“hands-free” computer interface to manipulate the electronic devices, especially

for disabilities.

Although it is not easy to design a very nice interface for any people with

different demands, there are some interfaces are specially designed for disabilities.

For example, “mouth stick” is an interface which can help disabled people to type

characters with his mouse instead of hands. “Head wand” is a head-mounted

equipment which can provide the functions such as typing, navigating through

web documents, etc., by head rotation [11]. However, those equipments have some
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limitations and therefore can’t fit every disability. For the previous examples,

they are not suitable for people who can’t move his head, and it requires extra

training.

In order to develop a system which can be accessible to everyone, the selec-

tion of a common physical device and approach to control computer is the most

crucial part. Nowadays, camera is the most common sensor which can be found

in most of the electronic devices. We have camera (at least one) attached on our

phone, computer and most of the hand-held device. Besides, eyes are the most

salient features of human face, we can get different information of others through

eye-contact, e.g. thought, needs, cognitive processes, emotion, and even the in-

terpersonal relations [8]. Thus, our interface is designed to capture eye rotation

through cameras to manipulate the computer.

In this paper, a system structure for video-based “hands-free” human-computer

interaction interface is proposed. This four-layer structure enables our system to

capture the environment image as an input, locate the user’s eyes and head, de-

tect and analysis their motions, and help user to accomplish simple operations of

electronic device. In addition to the system structure, our work mainly focuses

on locating user’s iris since it’s the most difficult part throughout the structure.

Once the iris is detected, the user’s eye motion capturing becomes much easier.

The first prototype of our system interface is also presented in this paper.

This prototype can capture the motions of eye rotation and support the turning-

page function while user is reading the Power Point.

My contribution of the work is mainly focus on two parts. The first part is

to implement the image analysis layer. That is, to find a robust method to locate

the user’s eye from the input image. It not only needs high accuracy rate and

high efficiency, but also can be applied into different application easily, like detect

the user’s head instead of eye. The second part is to implement the application

interface layer, which is mainly focus on the implementation of the interface of

our first prototype.

The remainder of this paper is organized as follows. Some related works

are introduced in Chapter 2. Chapter 3 presents our proposed system design.

Chapter 4 presents the features of the system. The implementation presents in

Chapter 5, experimental results in Chapter 6. Chapter 7 includes conclusion and
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future works is includes in Chapter 8.
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Chapter 2

Related works

In this chapter, some related methods and interfaces are going to be intro-

duced. Section 2.1 presents the learning algorithm called “Adaboost” which is

used in our system in order to locate user’s eye.

In Section 2.2, different existing eye detection methods are shown. The basic

concept of these methods will be introduced and discussed. Moreover, the reason

why they are not chosen in our system will also be explained.

In Section 2.3, some user interfaces for disability are presented and explained

how they affect our design.

2.1 Adaboost algorithm

Adaboost, short for “Adaptive Boosting” [12], is a machine learning algo-

rithm, using the Harr-like features (Fig. 2.1), to detect objects.

Figure 2.1: Features are used in cascaded Adaboost.
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Well-trained of the cascaded Adaboost is needed before detection. Firstly,

massive examples (including positive and negative examples) are input into the

training program. It calculates the feature values and generates some weak classi-

fiers. Then, it forms a strong classifier by combining the weak classifiers linearly.

The strong classifier classifies out the target by scanning the image in different

scales. One of the advantages of Adaboost algorithm is that it provides high accu-

racy rate. More details of Adaboost algorithm will be discussed in Section 3.1.1.

2.2 Other existing eyes detection methods

D. Sidibe et al. [2] proposed a skin color model to locate user’s head and

detect their eye by fitting an ellipse to the potential eye regions. The method

is simple and efficient. However, it requires a less complexity background and it

can’t be used for different color of people.

M. Hassaballah et al. [5] proposed another eye detection method with iris

detection at the same time. It calculates the entropy of the gray intensity on the

facial images and the regions of eye can be indicated by high values of entropy.

However, it requires the pre-knowledge of the user’s face and it is very sensitive

to the noise.

Hironobu Takano et al. [3] proposed an eye detection method with particle

filter. This method is able to detect user’s eye accurately according to its exper-

imental results. However, the results also show that the computation of method

is a little bit too complex.

To summarize, most of the eye detection methods are color-based. They

might occur some problems like easy influenced by the background, sensitive

with noise, computational complexity or not suitable for people with different

color. Some methods need the pre-knowledge of the user’s face.

2.3 User interface for disability

There are many researches focus on the design of user interface for disabil-

ities. Some of them need to wearing extra device and some need special sensor,

like the infrared emitter and tracker, in order to detect user’s motions.
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The “tongue-computer interface” is proposed by Lotte N.S. Andreasen Stru-

ijk [7]. It’s using a palatal plate which is placed on mould of the upper part of the

mouth and an activation unit glued to the tongue as input device. This system

can help user to type characters with moving his tongue. However, it needs extra

sensor and the user needs to put a special device into his mouth. Also, tongue

movement is not so natural for human to express their thought and command.

Jonathan Lombardi [4] developed another interface for controlling the mouse

click. The interface tracks the user’s eyebrows with a camera. When user raises

his eyebrows, the interface will activate the left-click event of the mouse. It’s

a very innovative design to control mouse-click since using eyelids may cause

problem due to blinking when people are interacting with computer.

Finger counter [1] is a camera-based interface which is able to recognize the

number of fingers user held up. It is using the background differences and edge

detection to locate user’s hand. After that, the system extracts the feature of

hand by processing the pixels with polar coordinate and analysis the state of

fingers. Under multiple testing, this system can work under different lightening

and background. Although it is very promising under different environment, it

hasn’t included the computer users with physical disabilities.
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Chapter 3

System design

Our proposed system structure is shown in Fig. 3.1. It is composed of four

main parts: sensor input layer, image analysis layer, motion detection

layer and application interface layer.

Sensor input layer captures the depth and color image from the environment

through Kinect sensor. In image analysis layer, the cascaded Adaboost algorithm

is used to locate the position of eyes of user from the color input image. Mo-

tion detection layer mainly detects user’s motions according to the located eyes

and the depth image captured from the first layer, which makes use of the iris

detection method. The fourth layer, the application interface layer, triggers the

corresponding pre-defined events and response to user according to the motions

the system detected.

About the work distribution, I mainly focus on the second and fourth layer,

so in this report, it only contains these two parts. For my groupmate Kin, who

focuses on the first and third layer. For more details about these two layers can

be referred to his report.
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Figure 3.1: The proposed system structure.
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3.1 Image analysis layer

The second layer of the structure is the image analysis layer. This layer

is used for locating the position of eyes and head from the color image. The

method using here is proposed by Paul Viola and Michael J. Jones [10], known

as the cascaded Adaboost. It has the advantages such as high accuracy rate,

efficient, independent from the color of user, does not required the pre-knowledge

of the facial image, and target independent. The cascaded Adaboost is not only

designed for eye detection, but also for any other objects. It enables the scalability

and compatibility of this layer as well as the system, because it only needs a little

effort to change or enlarge the function of this layer.

3.1.1 Cascaded Adaboost algorithm

The basic idea of cascaded Adaboost is divided into two parts: learning and

classification. Before the learning phase(Fig. 3.2), a large number of images are

needed. It contains positive samples(with target) and negative samples(without

target). Those samples are input into the training program, and it concludes the

target features and some corresponding data. Then, in classification phase, the

images with target(s) are input into the classification algorithm and it generates

the output image with the detected location of the target.

Figure 3.2: The basic flow of Adaboost algorithm.
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A strong classifier is used in Adaboost algorithm to detect user’s eyes. It

comprises several weak classifiers and each weak classifier is formed with three

parameters: feature, threshold and polarity. The classifier is so called “weak”

because each of them is not expected to be very accurate. Therefore, several weak

classifiers are combined linearly in order to complement each other, that is the

strong classifier.

A feature is formed by one of the components shown in Fig. 2.1 with different

sizes and positions. To enumerate all of them, according to the Fig. 3.3, the image

is scanned with the component of feature from left to right, top to bottom. After

each turn of scanning, the component is enlarged horizontally or vertically, and

scan the image again until the the component is covered the whole image.

Figure 3.3: The process of an image is scanned by one of the features.

To calculate the feature value (Fig. 3.4), the corresponding feature is covered

on the image. Since the inputs are color images form the environment, it is

necessary to convert into gray-level. Every feature consists of white and black

region, and the covered pixels are summed separately corresponding to different

color. Finally, the feature value is obtained by calculating the differences between

two summing up values.

Figure 3.4: The process of calculating the feature value.
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Algorithm 1 and Algorithm 2 show the pseudo-code to enumerate all the

features. Note that each feature is represented by the points of its left-top corner

and right-bottom corner.

Algorithm 1 Enumerate the features(1)

1: Enumerate all two horizontally stacked
2: for (v = 1; v ≤ ExamplesHeight; v + +) do
3: for (h = 2;h ≤ ExamplesWidth;h+ = 2) do
4: for (i = v; i ≤ ExampleHeight; i+ +) do
5: for (j = h; j ≤ ExampleWdith; j + +) do
6: Save(i− v, j − h, i, j)
7: end for
8: end for
9: end for

10: end for
11:

12: Enumerate all two vertically stacked features
13: for (v = 2; v ≤ ExamplesHeight; v+ = 2) do
14: for (h = 1;h ≤ ExamplesWidth;h+ +) do
15: for (i = v; i ≤ ExampleHeight; i+ +) do
16: for (j = h; j ≤ ExampleWdith; j + +) do
17: Save(i− v, j − h, i, j)
18: end for
19: end for
20: end for
21: end for
22:

23: Enumerate all three horizontally stacked features
24: for (v = 1; v ≤ ExamplesHeight; v + +) do
25: for (h = 3;h ≤ ExamplesWidth;h+ = 3) do
26: for (i = v; i ≤ ExampleHeight; i+ +) do
27: for (j = h; j ≤ ExampleWdith; j + +) do
28: Save(i− v, j − h, i, j)
29: end for
30: end for
31: end for
32: end for
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Algorithm 2 Enumerate the features(2)

1: Enumerate all three vertically stacked features
2: for (v = 3; v ≤ ExamplesHeight; v+ = 3) do
3: for (h = 1;h ≤ ExamplesWidth;h+ +) do
4: for (i = v; i ≤ ExampleHeight; i+ +) do
5: for (j = h; j ≤ ExampleWdith; j + +) do
6: Save(i− v, j − h, i, j)
7: end for
8: end for
9: end for

10: end for
11:

12: Enumerate all four stacked features
13: for (s = 2; s ≤ ExamplesWidth; s+ = 2) do
14: for (i = s; i ≤ ExamplesHeight; i+ +) do
15: for (j = s; j ≤ ExampleWidth; j + +) do
16: Save(i− s, j − s, i, j)
17: end for
18: end for
19: end for

The total number of the features are generated by a sample with the size of

24× 24 is 162,336. The number of different features is listed below:

• Two horizontally stacked features (Fig. 2.1(a)): 43, 200

• Two vertically stacked features (Fig. 2.1(b)): 43, 200

• Three horizontally stacked features (Fig. 2.1(c)): 27, 600

• Three vertically stacked features (Fig. 2.1(d)): 27, 600

• Four stacked features (Fig. 2.1(e)): 20, 736

In order to calculate such large amount of features, the “integral image”

is used. It accelerates the whole process effectively and makes the cascaded

Adaboost possible to be applied to detect the target in real-time video stream.

Refer to Fig. 3.5, the point A on the integral image is the sum of the pixels to its

left and above it. Then, the sum of the region D can be obtained by accessing

four points on its corners.
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Figure 3.5: Integral image

The mathematical representation of the integral image is:

ii(x, y) =
∑

x′≤x,y′≤y

i(x
′
, y

′
) (3.1)

where ii is the integral image and i is the original image.

And it can be calculated by two steps:

s(x, y) = s(x, y − 1) + i(x, y) (3.2)

ii(x, y) = ii(x− 1, y) + s(x, y) (3.3)

The threshold of a weak classifier is a critical value to classify the target and

non-target, and the polarity indicates that whether the feature value smaller or

larger than threshold is target. To select the best threshold of the weak classifier,

the error rate of each possible threshold is evaluated. The possible value of

threshold is one of the feature values generated by applying the feature of the

weak classifier to each input samples. The error rate of each threshold is the

summation of the weight of each misclassify image. In order to simplify the

explanation, the weight of each image is assumed to 1. Surely, the least amount

of error rate indicates the best threshold. The description of the procedure is

presented as follow:

• Assume that there are 6 input samples, A to F . The feature value of each

sample is evaluated and listed in Table 3.1. The sign of “ + ” indicates the

positive samples and “ − ” indicates negative. The table is sorted by the

13



Table 3.1: Error of each threshold and polarity.

Image Sign Feature values Error for polarity ”≤” Error for polarity ”>”

A + -10 2 4

B + 10 1 5

C - 52 2 4

D + 65 1 5

E - 73 1 4

F - 90 3 3

feature values with an increasing order.

• Suppose that the threshold is -10, and the polarity is “ ≤ ”, which means

that the image with a feature value smaller than or equal to the threshold

is considered as target.

• Image B and D is misclassified since they are positive but classified as

negative. Assume that the weight of each image is 1, then the error rate is

2 is this case.

• Note that each threshold has two error rates, since it has two kinds of

polarity.

• The error rate of each threshold is also listed in Table 3.1. According to

the table, the threshold and polarity with the smallest error rate can be

selected.

After the threshold and polarity is selected, the error rate of each weak

classifier due to the selected parameters is also obtained. Then, the best classifier

can be found by comparing the error rate between each classifier.

All the weights of the samples were assumed to be 1 before. In fact, at the

very beginning of the algorithm, the weight of each sample is assigned to 1/m

if the sample is positive, or 1/n otherwise, where m, n is the total amount of

positive samples and negative samples correspondingly. Before each turn of the

training, all the weights are normalized by divided each weight to the total sum

of weights. After the training, the weights are updated by the function which is

presented in the following:

14



wt+1,i = wt,iβ
1−ei
t (3.4)

where ei = 0 if the sample corresponding to the weight is classified correctly,

ei = 1 otherwise, and βt = εt
1−εt . εt is the summation of the weights of the

misclassified samples. Note that the weight of the correct classification of sample

isn’t updated since β0
t = 1. The update function tries to amplify the error of the

weak classifier generated in this turn in order to find a weak classifier which can

be complemented with the former classifiers.

The mathematical representation of the error rate of each threshold is:

eT = min(S+ + (T− − S−), S− + (T+ − S+)) (3.5)

where S+ and S− is the summation of weight of positive and negative images

with feature values larger than the threshold T correspondingly. T+ and T−

are the total sum of weight of positive and negative images correspondingly.

S+ + (T− − S−) is the error rate of the polarity “≤” and S− + (T+ − S+) is the

error rate of the polarity “>”. Therefore, this formula also indicates the polarity

of each threshold.

After several turns of training, weak classifiers are combined together lin-

early to form a strong classifier in order to detect the object more correctly and

efficiently. The details of the training algorithm is presented as follows:

• Given sample images (x1, y1), ..., (xn, yn) where yi = 0 for negative samples,

and yi = 1 for positive samples.

• Assign the weights of each samples i:

w1,i =

 1
2m

yi = 0

1
2l

yi = 1

where m, l are the number of negative and positive samples correspondingly.

• For t = 1, ..., T :

15



– Normalize each weight of the samples i, wt,i ← wt,i

Zt
, where Zt is the

total sum of the weights.

– Select the weak classifier, denoted as ht(x), with the minimum weighted

error:

εt = minf,θ,p
∑

iwi|h(xi, f, θ, p)− yi|

where f , θ, p are feature, threshold and polarity correspondingly.

– Update the weights of misclassified sample images i:

wt+1,i = wt,i
εt

1−εt

• Combine the weak classifiers linearly and form the strong classifier C(x):

C(x) =

1
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

where αt = log 1−εt
εt

In classification phase, the image is scanned in different scales in order to

detect the object in different sizes. The cascaded Adaboost detects an object

through a voting process. An object is a positive result when it is detected as

positive by more than half of the weak classifiers in the strong classifier. In order

to speed up the classification process, the strong classifiers are cascaded together

in order to eliminate the non-target object at earlier time. The algorithm of

training the cascaded Adaboost is as follows [9]:

• Given the values of the maximum false-positive rate per layer f , the mini-

mum detection rate per layer d, and the overall false-positive rate z

• P = set of positive samples; N = set of negative samples

• F0 = 1.0;D0 = 1.0; i = 0

• while F0 > z

16



– i← i+ 1

– while Fi > f × Fi−1

∗ ni ← ni + 1

∗ Train a classifier hi(x) which is consist of ni features with the

samples in P and N

∗ Cascade the hi(x) with the cascaded classifier

∗ Evaluate the cascaded classifier on the samples detected as positive

to determine Fi and Di

∗ While Di < d × Di−1, decrease threshold for hi(x). This might

affects Fi

– If Fi > z

∗ Evaluate the cascaded classifier on the set N .

∗ N = false detects samples .

3.1.2 Post-processing of cascaded Adaboost

In order to improve the accuracy of the detection, the post-processing method

is proposed. Although the original method performs satisfactory, either the false-

positive or false-negative rate is still a room for improvement. In fact, the false-

positive detection rate can be lowered by eliminating some detected regions that

couldn’t be eyes. Since the false-positive detection is usually caused by our mouse

and nose (Fig. 3.6), it can be assumed that the highest detected region, denoted

as r, is one of the user’s eyes. Then, the second highest region, denoted as r∗, is

found. If these two regions, r and r∗, are too closed to each other or the angle is

over certain degree, then the r∗ is eliminated from the image, and do the process

again until there is no more r∗ is found. Otherwise, r and r∗ are output as the

result of the detection. Some qualitative results are shown in Fig. 3.7 and the

flow chart of the algorithm is presents in Fig. 3.8.
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Figure 3.6: Wrong detection causes by nose.

Figure 3.7: The comparison between wrong detection without post-processing
and correct detection with post-processing.
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Figure 3.8: Flow chart of post-processing.
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3.2 Application interface layer

The application interface layer lies between user to system and system to

computer. Some events for manipulating the computer are defined in this layer.

The developer can implement his own event handler to specify the function when

the event is triggered. Such design enables system be expanded easily to support

various motions in the future. The former layer sends the detected information,

for example, the position of user’s gaze, to the application interface layer. Then,

it gives the feedback to user corresponding to the event handler if the motion of

user fires the trigger of any event. For example, if the system detects that user

stared at an icon of document for few seconds, it opens the file as a response.

This layer also enables the system being compatible to different application. For

example, stereoscopic display can be implemented by defining an event handler

to show a scene in different angle according to user’s gaze.
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Chapter 4

System features

Our system help user to accomplish some simple tasks with computer through

eyes or head rotation. It automatically tracks the motion of user’s eyes and head.

Furthermore, it is independent from any device, platform and language. It does

not require any specific except two cameras or a camera with a infrared sensor. It

is easy to expand the system in order to support various motion manipulations.

It can also be applied into different application, e.g. stereoscopic display, after

some small modification.
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Chapter 5

Implementation

5.1 Image analysis layer

In order to locate user’s eyes, it is necessary to implement the training pro-

gram and the classification algorithm of cascacded Adaboost. But in fact, the

OpenCV [6] provides the functions of cascaded Adaboost. Some built-in classi-

fiers for face and eye are already existed in the library and each classifier is defined

in an XML file. Therefore we can directly invoke the library to train our classifier

or to detect the target. Some parameters of the function provided by OpenCV

are needed to specify: scale factor and minimum neighbor. The scale factor

refers to the ratio of scaling up the image gradually during the classification. The

minimum neighbor is, in case of multiple times of detection of the same object,

and in order to lower the false-positive rate, the function automatically groups

up the detected rectangles and rejects the group which the number of rectangles

which is smaller than the minimum neighbor. The result of cascaded Adaboost

is shown in Fig. 5.1. It shows false-positive error rate, false-negative error rate,

and accuracy corresponding to each minimum neighbor with a scale factor 1.2.

According to the figure, with larger minimum neighbor, the false-positive rate

falls but the false-negative rate rises. The best result is 82% for accuracy with

42 of minimum neighbor.

The selected value of scale factor and minimum neighbor in the cascaded

Adaboost with our proposed post-processing is shown in Fig. 5.2. It presents the
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Figure 5.1: False-positive, false-negative and accuracy rate with scale factor 1.2

accuracy and processing time corresponding to each parameters. The relative

difference between the processing time and accuracy also has been shown, which

is the yellow bar in the figure. Furthermore, in order to compare each parame-

ter easily, the relative difference has been quantified and shown in the Fig. 5.3.

Note that the numbers shown in Fig. 5.3 are only for comparing between each

parameters and do not indicate any other information. According to the Fig. 5.2,

although the lower scale factor and minimum neighbor indicates higher accuracy,

it also indicates higher processing time. To balance these two factors, a param-

eter which has the largest value of the relative difference is selected, that is, the

longest of the yellow bar. According to Fig. 5.3, the best result is indicated by

the scale factor of 1.2 and the minimum neighbor of 10.

Besides, the speed of classification of cascading Adaboost can be improved

by constrain the window size of the detection. The experimental results show

that the cascaded Adaboost can detect the user’s eyes around a distance 40 to

70 cm from the sensor to the user with a minimum of window size of target is

30× 30 and the maximum 35× 35.
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Figure 5.2: The accuracy and the processing time of the cascaded Adaboost with
the proposed post-processing.

Figure 5.3: The performance of the cascaded Adaboost with the proposed post-
processing.
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5.2 Application interface layer

The main mission of application interface layer is to define a method for

system to give response to user. There are some event handlers can be defined

by this layer in order to specify the approach for manipulating the computer.

Another issue the application interface layer takes charge of is, it integrates

all the other layers. All the details about the data flow between each layer are

totally hidden in this layer. It only opens for some methods for developer to

register the event handler and enables the feature of system which can be applied

into different application by registering different event handlers and the developer

doesn’t need to take care about the data flow of each layer.

Furthermore, at the current state, the interface of the first prototype of our

system is also integrated into this layer temporally, as well as the implementation

of the function of eyes event handler.

In the first prototype of our system, there are two events are defined: looking

at left side and right side. In order to define the trigger of these two events base

on the user’s eyes, two phases are implemented.

The first phase is the calibration phase. In this phase, user is asked for

looking at the both left side and right side in order to obtain the initial position

of user’s irises (Fig. 5.4). During the calibration, two circles are shown on either

sides in order to instruct user. Also, there is a message shows to the user about

the current state of the calibration. Since it may fails in calibration, the system

will ask the user to re-calibration again immediately and therefore only the side

which is failed need to be redone. More details of the concept and implementation

of calibration can be referred to my teammate report.

The second phase is the triggering phase. After the calibration, the motion

detection layer is able to detect the user’s motions and sends the results to this

layer. After receiving the probability of each model of event, the event handler

will be triggered by this layer. A flag parameter indicates which event is trigger,

that is, left, right, or neither, is passed into the event handler.

To implement the function of checking if the user is looking at the border

for three second, a timer is created to count the time. When one of the events is

triggered, the timer is started the counting. After it counts a certain time, the
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Figure 5.4: The process of calibration.

eyes event handler is invoked. The timer is reset when the same event is no more

triggered or different events are triggered. However, since there may have some

unstable results due to noise, it’s about 0.55 second of buffer time is used in order

to smooth the unstable state of the results. The timer isn’t reset until the same

event no more triggered for 0.55 second.

The eyes event handler makes the system can be applied into different appli-

cation easily, the function of eyes event handler can be customized by developers.

The function implemented in our system is to simulate the keyboard events of

the left-arrow and right-arrow button in order to turn pages of the Power Point

document.

Besides, in order to display the video stream in the WPF application, it is

necessary to convert the Emgu.CV.Image to System.Window.Media.Imaging.BitmapSource.

There is one thing should be noted. There is a memory leaking in the conversion

and therefore the objects are created required to be freed manually. The codes

of the conversion is shown in List. 5.1.
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Listing 5.1: Code of conversion

[System.Runtime.InteropServices.DllImport("gdi32.dll")]

static extern int DeleteObject(IntPtr o);

public BitmapSource GetBitmapSource(Image<Bgr, Byte> image)

{

IntPtr intPtr = image.Bitmap.GetHbitmap();

BitmapSource bitmapSource =

System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap

(

intPtr,

IntPtr.Zero,

Int32Rect.Empty,

BitmapSizeOptions.FromEmptyOptions()

);

DeleteObject(intPtr);

return bitmapSource;

}
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Chapter 6

Experimental results

In this session, the results are discussed into two parts. In the first part, the

performance of cascaded Adaboost is shown. It compares the cascaded Adaboost

with and without the proposed post-processing by evaluating the results gener-

ated from 82 head images with different angle and distance which are captured

from Kinect sensor.

In the second part, it presents the first prototype of our system.

6.1 Result of cascaded Adaboost

In this section, we compare the results of cascaded Adaboost with and with-

out our proposed post-processing Table 6.1. The comparison of the accuracy

rate is shown in Fig. 6.1. The quantitative results without our proposed post-

processing are shown in the Table 6.2 . The best result is 90% which is generated

by the parameters 1.1 of scale factor and 35 of minimum neighbor. However,

it needs extra processing time to obtain such a result. If the processing time

is taken into the consideration, the best result is only 82%, which is generated

by the parameters 1.2 of scale fact and 24 of minimum neighbor. Therefore, it’s

still a room for improvement. With the proposed post-processing method, which

quantitative results are shown in Table . The proposed method improve the

false-positive rate very much. The best result is 99% which is generated by the

parameters 1.1 of scale fact and 20 of minimum neighbor. Take the processing
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time in consideration, it still has 98% of accuracy rate, which is generated by the

parameters 1.2 of scale factor and 10 of minimum neighbor. It is interesting that

it turns the worst into the best. Since the worst result is caused by over-sensitive

detection, after eliminated the false-positive detection, it becomes the best.

Besides, although the processing time of parameters with 1.1 of scale fact

and 20 of minimum neighbor is a little bit long, it is not unendurable. In fact,

a computer with Intel i5 760 CPU and 4GB ram, it can perform very smoothly

with those parameters.

Finally, there are some results of the cascaded Adaboost eye detection shown

in Fig. 6.2. The results show the detection performs efficient and effective, since

no matter what direction the user face to, or even one eye is coved by hand, the

cascaded Adaboost detection can detect the user eyes successfully.

Scale factor/
Min neighbour

False
positive

False
negative

Time FP rate FN rate Accuracy

1.1/20 37 1 33.84 45% 1% 54%

1.1/25 15 1 32.96 18% 1% 80%

1.1/35 1 7 34.44 1% 9% 90%

1.1/40 1 8 34.18 1% 10% 89%

1.1/42 1 9 33.51 1% 11% 88%

1.1/44 1 11 35.2 1% 13% 85%

1.1/45 0 11 32.79 0% 13% 87%

1.2/10 55 1 19.96 67% 1% 32%

1.2/20 13 6 18.3 16% 7% 77%

1.2/22 12 6 18.76 15% 7% 78%

1.2/23 9 8 18.87 11% 10% 79%

1.2/24 7 8 19.43 9% 10% 82%

1.2/25 6 11 19.91 7% 13% 79%

1.2/35 1 19 20.52 1% 23% 76%

Table 6.1: Experimental results of the method without the post-processing
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Scale factor/
Min neighbour

False positive False negative Time FP rate FN rate Accuracy

1.1/20 0 1 33.84 0% 1% 99%

1.1/25 0 2 32.96 0% 2% 98%

1.1/35 0 5 34.44 0% 6% 94%

1.1/40 0 8 34.18 0% 10% 90%

1.1/42 0 8 33.51 0% 10% 90%

1.1/44 0 10 35.2 0% 12% 88%

1.1/45 0 13 32.79 0% 16% 84%

1.2/10 1 1 19.96 1% 1% 98%

1.2/20 2 6 18.3 2% 7% 90%

1.2/22 1 8 18.76 1% 10% 89%

1.2/23 1 9 18.87 1% 11% 88%

1.2/24 0 9 19.43 0% 11% 89%

1.2/25 0 11 19.91 0% 13% 87%

1.2/35 0 21 20.52 0% 26% 74%

1.3/10 0 10 12.04 0% 12% 88%

1.3/15 1 23 13.29 1% 28% 71%

Table 6.2: Experimental results of the proposed post-processing

Figure 6.1: The comparison of the cascaded Adaboost with and without the
post-processing.
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Figure 6.2: Results of the cascaded Adaboost detection.

6.2 Prototype of the interface

The system is running on the computer with the Intel Core i5-760, 4 GB

RAM. About the sensor device, our system uses the Kinect v1 in the implemen-

tation. The resolution of the camera is set to 640 × 480 with fps 15 with YUV

format.

The system is a WPF application which is implemented in C]. The libraries

it uses including the Kinect for Windows SDK v1.8 and the EmguCV v2.9. The

EmguCV library is same as the OpenCV library, however, in C]. The functions

the Kinect of Windows SDK provide to our system are the color image capturing

and the depth image capturing, and the functions of the basic image process-

ing such as convolution, histogram equalization, and gray image conversion are

provided by EmguCV library. It also provides the function of cascaded Adaboost.

Fig. 6.3 is the captured screen of our first prototype of the interface. This

interface can help user to turn pages while the user are reading the Power Point.

The circles on the left and right side indicates the focus point of the user’s eyes.

Whenever the user stares at the either side for three seconds, the system will

automatically help user to turn to the next or the previous page.

Although it hasn’t combined the depth image into the motion detection layer

to fix the problem of head movement, the result is still promising. The system

can correctly detect the user’s motions whenever the user stares at the border of

the screen.
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Figure 6.3: Captured screen of the first prototype. The circle indicates the focus
point of the user’s eyes. It would not appear when user is looking at the center
of the screen.
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Chapter 7

Conclusions

This paper presents a “hands-free” human-computer interface by capturing

the motions of user’s head and eyes in order to control the computer. It includes

the design of the system structure and the methodology to implement each layer.

The system structure enables the system being implemented in different plat-

form, application and can be easily expanded in order to support various motion

capturing.

Besides, the cascaded Adaboost in the image analysis layer with the proposed

post-processing method performs very well. The results of the proposed method

show a higher accuracy rate compare to the original method. Moreover, the first

prototype of our system is also presented in this paper, which can automatically

locate user eye’s position, turning page of the Power Point document for user

without using hands.

In the future, we hope that it could be truth that the “hands-free” interface

can further replace the traditional interface and can help more people to control

the computer.
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Chapter 8

Future work

Currently, we just implemented our system with Kinect. In the future, we’d

like our system can be also implemented on any other devices. Therefore, we

are going to implement it with only one frontal camera. Besides, in order to

fulfill our system and to be more comprehensive, we will try to combine the

speech recognition and text-to-speech function into our system. We’d like our

system can be implemented in different platform, especially in mobile device.

Furthermore, we’d like to expand our improved iris detection algorithm to more

application, for example, the naked-eye 3D.
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