
Efficient Higher Order Self Attention via Tensor Operations

with Topology Enhanced Graph Neural Network for Molecular

Graph Classification

by

Choi Wan Ioi DC011407

MATH4002

Research in Mathematics

2023/2024

BSc in Mathematics (Mathematics and Applications)

Department of Mathematics

Faculty of Science and Technology

University of Macau

Name of Supervisor: Kou Kit Ian

Faculty/Department: Faculty of Science and Technology / Department of Mathematics

Name of Co-Supervisor (if any): ______________________________

Faculty/Department: ______________________________

Approved by ___

Efficient Higher Order Self Attention via Tensor Operations with

Topology Enhanced Graph Neural Network for Molecular Graph

Classification

by Choi Wan Ioi

Thesis Supervisor: Professor Kou Kit Ian

Abstract

 We modify a recently proposed higher order generalization of self attention

mechanism and reduce its time complexity using tensor operations. Then the modified

higher order self attention is applied to a graph neural network with a novel structural

encoding based on cell complex from algebraic topology. Experiments on molecular

graph benchmarks show that our modified higher order self attention is more efficient

than the original higher order self attention, and our proposed structural encoding

improves the performance of the graph neural network.

Keywords self attention, tensor decomposition, molecular property prediction, graph

neural network, cell complex

Contents

Section 1 Introduction ... 5

Section 2 Preliminary .. 7

Section 3 Self attention and its generalization ... 13

Section 4 Efficient third order self attention ... 15

Section 5 Graph Neural Network ... 17

Section 6 Cell Complex Neural Network ... 20

Section 7 Topological Structural Encoding ... 21

Section 8 Experiments ... 23

Section 9 Conclusion .. 26

Reference .. 27

Appendix ... 29

Section 1

Introduction

 In recent years, there has been a remarkable surge in the field of natural

language processing and computer vision, thanks to the advancements in deep

learning. One significant breakthrough that has revolutionized these domains is the

introduction of the self-attention mechanism [1]. Self-attention has emerged as a

powerful tool for modeling dependencies and capturing contextual information within

a sequence of data, be it text or images.

The key idea behind self-attention is to calculate attention weights by inner

product between every pair of positions in the input sequence. These attention weights

represent the importance or relevance of each position with respect to others. The

attention weights are then used to compute weighted sums of the values associated

with each position, resulting in a context vector that encapsulates the relevant

information from the entire sequence.

Intuitively, self attention captures pairwise interaction between positions in a

sequence, but not higher order interaction. Recent work [2] has shown that self

attention is unable to solve a simple task about learning the correlation between triples

of words. To address this issue, the authors proposed a higher order self attention, but

it was not implemented due to the expensive computational cost.

Graph neural networks have emerged as an effective approach for tasks over

graph-structured data, and structural encoding is crucial to the effectiveness of graph

neural network. Motivated by the success of cell complex neural networks which are

generalization to graph neural networks that can model higher order interactions, it is

interesting to explore whether incorporating structural encoding based on cell

complex can enhance the performance of graph neural networks.

Contribution We modified the higher order self attention in [2] and implement it

using tensor operations to reduce its time complexity from 𝑂(𝑁2𝑑2) to 𝑂(𝑁𝑑2). We

also proposed a novel structural encoding for graph neural network which is an

extension to the degree encoding. Experiments on various molecular graph datasets

show that our modified higher order self attention is more efficient than the original

formulation of the higher order self attention, and our proposed structural encoding

can effectively enhance the performance of the graph neural network.

Section 2

Preliminary

2.1 Tensor Operations and Decompositions

In this subection, we will introduce some basic tensor operations and their

properties, such as mode-n matricization, mode-n product and tensor contraction. We

will also introduce the CP decomposition of a tensor and its properties.

We use script letters (e.g. 𝒜,ℬ) to represent tensors and use italic letters (e.g.

𝐴, 𝐵) to represent matrices.

Definition 1 (mode-n matricization [3]) The mode-n matricization of a tensor 𝒯 ∈

ℝ𝐼1×𝐼2×⋯×𝐼𝑁 is a matrix 𝒯(𝑛) ∈ ℝ
𝐼𝑛×𝐼1𝐼2⋯𝐼𝑛−1𝐼𝑛+1⋯𝐼𝑁.

Figure 1: A tensor of size 4x3x2

 It is easier to understand the concept of mode-n matricization using an

example. Let 𝒜 ∈ ℝ4×3×2 be the tensor as shown in figure 1. Then

𝒜(1) = [

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

]

𝒜(2) = [
1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24

]

𝒜(3) = [
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
]

 The mode-n product between a tensor and a matrix can be defined using the

mode-n matricization.

Definition 2 (mode-n product [3]) The mode-n product between a tensor 𝒯 ∈

ℝ𝐼1×𝐼2×⋯×𝐼𝑁 and a matrix 𝐴 ∈ ℝ𝐽×𝐼𝑛 results in a tensor 𝒯 ×𝑛 𝐴 ∈

ℝ𝐼1×⋯×𝐼𝑛−1×𝐽×𝐼𝑛+1×⋯×𝐼𝑁 with

(𝒯 ×𝑛 𝐴)(𝑛) = 𝐴𝒯(𝑛)

 Some useful properties of the mode-n product are included in the following

lemma.

Lemma 1 (Properties of mode-n product [3]) Let 𝒯 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁 and 𝐴𝑛 ∈ ℝ
𝐽𝑛×𝐼𝑛.

1. 𝒯 ×𝑚 𝐴𝑚 ×𝑛 𝐴𝑛 = 𝒯 ×𝑛 𝐴𝑛 ×𝑚 𝐴𝑚 for 𝑚 ≠ 𝑛

2. For 𝐵𝑛 ∈ ℝ
𝐾𝑛×𝐽𝑛, 𝒯 ×𝑛 𝐴𝑛 ×𝑛 𝐵𝑛 = 𝒯 ×𝑛 (𝐵𝑛𝐴𝑛)

 The CP decomposition of a tensor can be defined using the mode-n product.

Definition 3 (CP decomposition [4]) The CP decomposition decompose a tensor 𝒯 ∈

ℝ𝐼1×𝐼2×⋯×𝐼𝑁 into a superdiagonal tensor ℐ𝑅 ∈ ℝ
𝑅×⋯×𝑅 with diagonal 1,… ,1

multiplied by a factor matrix 𝐴𝑛 ∈ ℝ
𝐼𝑛×𝑅 on each mode as

𝒯 = ℐ𝑅 ×1 𝐴1 ×2 𝐴2⋯×𝑛 𝐴𝑁

where 𝑅 ∈ ℕ is called the CP rank of 𝒯.

 The relation between the mode-n matricization of a tensor 𝒯 and its CP

decomposition is given in the following lemma.

Lemma 2 ([3]) 𝒯 = ℐ𝑅 ×1 𝐴1 ×2 𝐴2⋯×𝑁 𝐴𝑛 ⟺𝒯(𝑛) = 𝐴𝑛(𝐴𝑁⊙⋯⊙𝐴𝑛+1⊙

𝐴𝑛−1⊙⋯⊙𝐴1)
𝑇, where ⊙ is the column-wise Kronecker product.

 We also introduce the definition of tensor contraction.

Definition 4 (Tensor contraction) Given 𝒜 ∈ ℝ𝐼1×𝐾1×𝐾2 and ℬ ∈ ℝ𝐽1×𝐾1×𝐾2. A tensor

contraction over 2 modes results in a tensor 𝒜 ⋅ ℬ ∈ ℝ𝐼1×𝐽1 with

(𝒜 ⋅ ℬ)𝑖1𝑗1 = ∑ ∑ 𝒜𝑖1𝑘1𝑘2ℬ𝑗1𝑘1𝑘2

𝐾2

𝑘2=1

𝐾1

𝑘1=1

2.2 Cell Complex

 In this subsection, we will introduce the definition of cell complex, a

fundamental building block of algebraic topology.

Definition 5 (Regular cell complex [5]) A regular cell complex is a topological space

𝑋 together with a partition {𝑋𝜎}𝜎∈𝑃𝑋 of subspaces 𝑋𝜎 of 𝑋 such that:

1. For each 𝑥 ∈ 𝑋, every sufficiently small neighborhood of 𝑥 intersects finitely

many 𝑋𝜎.

2. For all 𝜏, 𝜎 ∈ 𝑃𝑋, we have that 𝑋𝜏 ∩ 𝑋𝜎̅̅̅̅ ≠ ∅ if and only if 𝑋𝜏 ⊆ 𝑋𝜎̅̅̅̅ .

3. Every 𝑋𝜎 is homeomorphic to ℝ𝑛𝜎 for some 𝑛𝜎.

4. For every 𝜎 ∈ 𝑃𝑋, there is a homeomorphism 𝜙 of a closed ball in ℝ𝑛𝜎 to 𝑋𝜎̅̅̅̅

such that the restriction of 𝜙 to the interior of the ball is a homeomorphism onto

𝑋𝜎.

 In addition, we define 𝜏 ≤ 𝜎 ⟺ 𝑋𝜏 ⊆ 𝑋𝜎̅̅̅̅ and 𝜏 < 𝜎 ⟺ 𝑋𝜏 ⊂ 𝑋𝜎̅̅̅̅ .

 A 𝑘-cell is a cell 𝜎 ∈ 𝑃𝑋 with 𝑛𝜎 = 𝑘. For example, a 0-cell is a point, a 1-cell

is a line segment without its endpoint, and a 2-cell is the interior of a polygon.

A cell complex 𝑋 is of dimension 𝑘 if 𝑛𝜎 ≤ 𝑘 for all 𝜎 ∈ 𝑃𝑋 and there is at

least one 𝜏 ∈ 𝑃𝑋 such that 𝑛𝜏 = 𝑘. An example of a cell complex of dimension 2 is

shown in Figure 2.

Figure 2 ([5]): A cell complex of dimension 2

In practice, we only consider cell complexes of dimension 𝑘 ≤ 2. A cell

complex of dimension 2 can be represented by a 3-tuple (𝑉, 𝐸, 𝑃), where 𝑉, 𝐸, 𝑃 are

the sets of 0-cells (vertices), 1-cells (edges) and 2-cells (polygons) respectively. Also,

a graph 𝐺 = (𝑉, 𝐸) can be seen as a cell complex of dimension 1, where the set of 0-

cells is the set of vertices 𝑉 and the set of 1-cells is the set of edges 𝐸.

Intuitively, a cell complex is formed by gluing cells together in a way that

every (𝑘 − 1)-cell is either on the boundary of some 𝑘-cells, or has no intersection

with the boundary of any 𝑘-cells. Therefore, the structure of a cell complex can be

described by a boundary relation. The boundary relation describes which cells are on

the boundary of other cells.

Definition 6 (Boundary relation [5]) Given two cells 𝜎, 𝜏 ∈ 𝑃𝑋, we have the boundary

relation 𝜎 ≺ 𝜏 if 𝜎 < 𝜏 and there is no 𝛿 such that 𝜎 < 𝛿 < 𝜏.

 We can use the boundary relation to define four types of adjacencies present in

cell complexes.

Definition 7 (Cell complex adjacencies [5]) For a cell complex 𝑋 and a cell 𝜎 ∈ 𝑃𝑋,

we define:

1. The boundary adjacent cells 𝐵(𝜎) = {𝜏 | 𝜏 ≺ 𝜎}. These are the lower-

dimensional cells on the boundary of 𝜎. For example, the boundary adjacent cells

of an edge are its vertices, and the boundary adjacent cells of a polygon are its

edges.

2. The co-boundary adjacent cells 𝐶(𝜎) = {𝜏 | 𝜎 ≺ 𝜏}. These are the higher-

dimensional cells with 𝜎 on its boundary. For example, the co-boundary adjacent

cells of a vertex are the edges having the vertex as an endpoint, and the co-

boundary adjacent cells of an edge are the polygons having the edge as one of its

sides.

3. The lower adjacent cells 𝑁𝑙(𝜎) = {𝜏 | ∃𝛿 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛿 ≺ 𝜎 𝑎𝑛𝑑 𝛿 ≺ 𝜏} =

{𝜏 | 𝐵(𝜎) ∩ 𝐵(𝜏) ≠ ∅}. These are the cells of the same dimension as 𝜎 with a

lower dimensional cells on the boundary of 𝜎 on their boundary. For example,

the lower adjacent cells of an edge 𝑒𝑖 are edges that shares a common endpoint

with 𝑒𝑖, and the lower adjacent cells of a polygon 𝑝𝑖 are polygons that shares a

common side with 𝑝𝑖.

4. The upper adjacent cells 𝑁𝑢(𝜎) = {𝜏 | ∃𝛿 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜎 ≺ 𝛿 𝑎𝑛𝑑 𝜏 ≺ 𝛿} =

{𝜏 | 𝐶(𝜎) ∩ 𝐶(𝜏) ≠ ∅}. These are the cells of the same dimension as 𝜎 on the

boundary of a higher-dimensional cells with 𝜎 on its boundary. For example, the

upper adjacent cells of a vertex 𝑣𝑖 are vertices that are connected to 𝑣𝑖 by an

edge, and the upper adjacent cells of an edge 𝑒𝑖 are edges that are the sides of

polygons with 𝑒𝑖 as one of its sides.

Corollary 1 Given a graph 𝐺 = (𝑉, 𝐸) and a vertex 𝑣𝑖, the number of co-boundary

adjacent cells |𝐶(𝑣𝑖)| and the number of upper adjacent cells |𝑁𝑢(𝑣𝑖)| of 𝑣𝑖 is equal

to deg 𝑣𝑖. Also the number of boundary adjacent cells |𝐵(𝑣𝑖)| and the number of

lower adjacent cells |𝑁𝑙(𝑣𝑖)| of a vertex 𝑣𝑖 is equal to 0.

 Given a graph 𝐺 = (𝑉, 𝐸), one can construct an associated cell complex of

dimension 2 by attaching 2-cells to all chordless cycles in the graph as shown in

Figure 3.

Figure 3: A graph and its associated cell complex of dimension 2

Definition 8 (Chordless cycle) A chordless cycle in a graph is a cycle such that no two

vertices of the cycle are connected by an edge that does not itself belong to the cycle.

Figure 4: A chordless cycle (green) and a cycle that is not chordless (red)

Section 3

Self attention and its generalization

 Self attention [1], since its proposal, have been widely used in the field of

natural language processing and computer vision. Based on self attention, famous

large language model and generative model, such as GPT-4 and Sora, have been

developed.

 In this section, we will introduce the vanilla self attention and a recently

proposed higher order generalization of self attention.

Definition 9 (self attention [1]) Given 𝑁 input vectors with dimension 𝑑, written in

matrix form 𝑋 ∈ ℝ𝑁×𝑑, the self attention 𝑓:ℝ𝑁×𝑑 → ℝ𝑁×𝑑 computes

𝑓(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)𝑉

where 𝑄 = 𝑋𝑊𝑄, 𝐾 = 𝑋𝑊𝐾 and 𝑉 = 𝑋𝑊𝑉 are three different learnable linear

transformation of 𝑋.

 This can be rewritten as

𝑓(𝑋)𝑖 =∑𝐴𝑖𝑗𝑉𝑗

𝑁

𝑗=1

= (∑𝐴𝑖𝑗𝑋𝑗

𝑁

𝑗=1

)𝑊𝑉

where

𝐴𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)
𝑖𝑗

=
exp(𝑋𝑖𝑊𝑄𝑊𝐾

𝑇𝑋𝑗
𝑇/√𝑑)

∑ exp(𝑋𝑖𝑊𝑄𝑊𝐾
𝑇𝑋𝑗

𝑇/√𝑑)𝑁
𝑗=1

Essentially, self attention updates each input vector by computing a weighted

sum of all input vectors followed by a linear transformation, where the weights

depend on every pair of input vector.

Intuitively, self attention can model pairwise interaction in the input vectors

since the effect of a specific input vector on the output is affected by the values of

other input vectors. However, it is unclear whether self attention can model triplewise

or higher order interaction in the input vectors.

Recently, [2] has shown that self attention cannot capture triplewise

interaction. They defined a task related to learning correlation between triples of

words, and show that it cannot be solved using self attention. To deal with this

limitation, they proposed a higher order generalization of self attention using column-

wise Kronecker product.

Definition 10 (𝑠-order self attention [2]) For order 𝑠 ≥ 2, input matrix 𝑋 ∈ ℝ𝑁×𝑑 and

matrices 𝑄,𝐾1, 𝐾2, 𝑉1, 𝑉2 ∈ ℝ
𝑑×𝑑, 𝑠-order self attention 𝑓:ℝ𝑁×𝑑 → ℝ𝑁×𝑑 computes

𝑓(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙⋯⊙ (𝑋𝐾𝑠−1))
𝑇

⏟

ℝ𝑑×𝑁
𝑠−1

)((𝑋𝑉1) ⊙⋯⊙ (𝑋𝑉𝑠−1))⏟

ℝ𝑁
𝑠−1×𝑑

When 𝑠 = 3, we obtain the third order self attention.

𝑓(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟

ℝ𝑑×𝑁
2

)((𝑋𝑉1) ⊙ (𝑋𝑉2))⏟

ℝ𝑁
2×𝑑

 The author in [2] did not implement the third order attention due to its

expensive computational cost when computing 𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟

ℝ𝑑×𝑁
2

 which

requires 𝑂(𝑁3𝑑) time if the classic matrix multiplication algorithm is used.

Section 4

Efficient third order self attention

 In this section, we will simplify and rewrite the third order attention using

tensor operations.

 We first simplify the third order self attention by omitting the exponential

function in the softmax operator. The simplified third order attention computes

𝑓(𝑋) = 𝐷−1 (𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟

ℝ𝑑×𝑁
2

)((𝑋𝑉1) ⊙ (𝑋𝑉2))⏟

ℝ𝑁
2×𝑑

where 𝐷 = 𝑑𝑖𝑎𝑔(𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟

ℝ𝑑×𝑁
2

𝟏𝑁2×1) ∈ ℝ
𝑁×𝑁 can be computed in

𝑂(𝑁2𝑑). However the product ((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟

ℝ𝑑×𝑁
2

((𝑋𝑉1) ⊙ (𝑋𝑉2))⏟

ℝ𝑁
2×𝑑

 still requires

𝑂(𝑁2𝑑2) time. Therefore, we rewrite the simplified third order self attention using

tensor operations.

Theorem 1 Let 𝒜 = ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1 and ℬ = ℐ𝑑 ×2 𝑉2 ×3 𝑉1. Then

(𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋)(1) = 𝑋𝑄((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇
 and (ℬ ×2 𝑋 ×3 𝑋)(1) =

((𝑋𝑉1) ⊙ 𝑋(𝑉2))
𝑇
.

Proof: 𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 = ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1 ×1 𝑋 ×2 𝑋 ×3 𝑋

= ℐ𝑑 ×1 𝑄 ×1 𝑋 ×2 𝐾2 ×2 𝑋 ×3 𝐾1 ×3 𝑋 (Lemma 1 property 1)

= ℐ𝑑 ×1 𝑋𝑄 ×2 𝑋𝐾2 ×3 𝑋𝐾1 (Lemma 1 property 2)

Therefore (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋)(1) = (ℐ𝑑 ×1 𝑋𝑄 ×2 𝑋𝐾2 ×3 𝑋𝐾1)(1)

= 𝑋𝑄((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇
 (Lemma 2)

The proof for (ℬ ×2 𝑋 ×3 𝑋)(1) = ((𝑋𝑉1) ⊙ 𝑋(𝑉2))
𝑇
 is similar.

Corollary 2 Let 𝒜 = ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1 and ℬ = ℐ𝑑 ×2 𝑉2 ×3 𝑉1. Then

((𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) ⋅ (ℬ ×2 𝑋 ×3 𝑋))(1) = 𝐷

−1𝑋𝑄((𝑋𝐾1) ⊙

(𝑋𝐾2))
𝑇
((𝑋𝑉1) ⊙ 𝑋(𝑉2))

 The advantage of this formulation of the simplified third order attention is that

the CP decomposition of the mode-n product 𝒜 ×𝑛 𝑋 and the tensor contraction 𝒜 ⋅

ℬ can be computed from the CP decomposition of 𝒜 and ℬ efficiently [6]. For

example, the CP decomposition of the mode-n product 𝒜 ×1 𝑋 can be computed in

𝑂(𝑁𝑑2) time using Lemma 1 property 2 given the CP decomposition of 𝒜 =

ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1. Also, (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) ⋅ (ℬ ×2 𝑋 ×3 𝑋) and 𝐷

(which can be thought as computing the tensor contraction (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋) ⋅

𝟏1×𝑁×𝑁) can be computed in 𝑂(𝑁𝑑2) time using similar technique.

 We introduce our proposed efficient third order self attention layer.

Definition 11 (efficient third order self attention) Given 𝑋 ∈ ℝ𝑛×𝑑, the efficient third

order self attention 𝑓:ℝ𝑁×𝑑 → ℝ𝑁×𝑑 computes

𝑓(𝑋) = (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) ⋅ (ℬ ×2 𝑋 ×3 𝑋)

where 𝒜 and ℬ are tensors with CP rank 𝑑 and learnable factor matrices. The

elements in the factor matrices of 𝒜 are initialized from 𝑁(0,1/𝑑4) and the elements

in the factor matrices of ℬ are initialized from 𝑁(0,1/𝑑3).

 We fix the factor matrices of 𝒜 and ℬ to have CP rank 𝑑 to ensure the

efficient third order self attention have approximately the same number of learnable

parameters as the original third order self attention. The elements in the factor

matrices of 𝒜 and ℬ are initialized in a way that the elements of

(𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) and the elements of (ℬ ×2 𝑋 ×3 𝑋) will have

approximately unit variance when the elements of 𝑋 have unit variance.

Section 5

Graph Neural Network

 In this section, we will describe how to apply the efficient third order attention

in a Graph Neural Network (GNN) for graph classification.

 Given a graph 𝐺 = (𝑉, 𝐸) with node attributes 𝑋 ∈ ℝ|𝑉|×𝑑, we aim to predict

the class which the graph belongs to. This usually involves the following three steps.

Step 1: Use a GNN to update the node representation, i.e., 𝑋̂ = 𝐺𝑁𝑁(𝑋, 𝐺) ∈ ℝ|𝑉|×𝑑

Step 2: Use a permutation-invariant readout function (e.g. mean, sum, max) to obtain

the graph representation, i.e., 𝑌̂ = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡(𝑋̂) ∈ ℝ𝑑

Step 3: The graph representation 𝑌̂ is further transformed depending on the task. For a

graph classification task, 𝑌̂ is mapped to a one-hot encoded vector.

 GNNs can be divided into 3 caterogies: Message Passing Neural Network

(MPNN), Graph Transformer (GT) and Spectral Graph Neural Network (SGNN).

 MPNNs update node representations by aggregating information from

neighboring nodes. The node representation of node 𝑣𝑖 is updated by

𝑋̂𝑖 = 𝑓 (𝑋𝑖, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑣𝑗∈𝑁(𝑣𝑖) (𝑔(𝑋𝑖, 𝑋𝑗)))

where 𝑓 and 𝑔 are learnable functions, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 is a permutation-invariant

function and 𝑁(𝑣𝑖) is the neighborhood of node 𝑣𝑖. By stacking 𝑘 layers of MPNN,

the node representation 𝑋̂𝑖 can capture information from the 𝑘-hop neighborhood of

node 𝑣𝑖.

 GTs update node representations by combining information from all nodes in

the graph using self attention mechanism.

𝑋̂𝑖 = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋)𝑖

 The updated node representation by GTs of node 𝑣𝑖 depends on the node

representation of all nodes in the graph, unlike the updated node representation by

MPNNs which only depends on the node representation of the neighborhood of node

𝑖. Therefore GTs can capture longer range interaction than MPNNs but with a higher

computational cost.

 Different from MPNNs and GTs, SGNNs update the node representation by

utilizing the eigendecomposition of the symmetrically normalized graph laplacian.

Definition 12 (symmetrically normalized graph laplacian) For a graph 𝐺 = (𝑉, 𝐸)

with 𝑁 nodes, the symmetrically normalized graph laplacian 𝐿 ∈ ℝ𝑁×𝑁 is defined as

𝐿𝑖,𝑗 =

{

1 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 deg 𝑣𝑖 ≠ 0

−
1

√deg 𝑣𝑖 deg 𝑣𝑗
𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑣𝑖 𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Since the symmetrically normalized graph laplacian is symmetric, it admits an

eigendecomposition 𝐿 = 𝑈Λ𝑈𝑇 where 𝑈𝑈𝑇 = 𝑈𝑇𝑈 = 𝐼𝑁 and Λ = 𝑑𝑖𝑎𝑔(𝜆) =

𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛).

 SGNNs update the node representation in three steps:

Step 1: 𝑋̅ = 𝑈𝑇𝑋 (Graph Fourier Transform)

Step 2: 𝑋̃ = 𝑓(Λ)𝑋̅ (Filtering)

Step 3: 𝑋̂ = 𝑈𝑋̅ (Inverse Graph Fourier Transform)

 Therefore the updated node representation can be written as 𝑋̂ = 𝑈𝑓(Λ)𝑈𝑇𝑋.

 In SGNNs, 𝑓 is usually a polynomial acting elementwisely on the diagonal of

Λ, such as Chebyshev polynomial [7], Bernstein polynomial [8] and Jacobi

polynomial [9]. Using the property 𝑈𝑝(Λ)𝑈𝑇 = 𝑝(𝑈Λ𝑈𝑇) = 𝑝(𝐿) where 𝑝 is a

polynomial, polynomial SGNN can avoid computing the expensive eigenvalue

decomposition. Also, a 𝑘-th order polynomial SGNN updates the node representation

of a node 𝑣𝑖 using information in its 𝑘-hop neighborhood, due to the fact that 𝐿𝑖,𝑗
𝑘 ≠ 0

when 𝑣𝑗 is in the 𝑘-hop neighborhood of 𝑣𝑖.

 Recently, [10] proposed Specformer by replacing 𝑓 by self attention

mechanism. The eigenvalues 𝜆 ∈ ℝ𝑁 is mapped to vectors 𝜆̂ ∈ ℝ𝑁×𝑑, and 𝜆̂ is

updated by self attention instead of a polynomial. They showed that Specformer can

outperform polynomial SGNN due to the fact that self attention can capture

interaction between eigenvalues while the elementwise polynomial cannot.

Section 6

Cell Complex Neural Network

 In this section, we will introduce cell complex neural network, which is

generalization of graph neural network to cell complex.

 Cell complex neural network is motivated by the fact that graph can only

model pairwise relation between nodes, therefore unable to model long-range and

group interactions consistently. On the other hand, cell complex can model higher-

dimensional structures and higher-order interaction, which is crucial for applications

such as social network and molecular chemistry, since social interaction can involve

more that two people and electrostatic interaction can involve more that two atoms.

 [5] proposed CIN which is a MPNN on cell complex. CIN computes a cell

representation (including node representation, edge representation and polygon

representation) for every cell in the associated cell complex of dimension 2

constructed from a molecular graph. Then the cell representation is updated by

aggregating information from the cell’s boundary neighborhood, co-boundary

neighborhood, lower neighborhood and upper neighborhood simultaneously. Finally,

readout functions are applied to the node representations, edge representations and

polygon representations respectively to obtain three different graph representations,

which are further combined to obtain the final graph representation.

 [11] proposed CAN which is also a MPNN on cell complex. Different from

CIN, CAN first combine the node representations with the edge representations. Then

only the edge representations are updated by combining information from the edges in

the lower neighborhood and upper neighborhood of an edge. Finally, a readout

function is applied to the edge representations to obtain the graph representation.

Section 7

Topological Structural Encoding

 In this section, we will introduce structural encoding for graph transformers

(GTs) and our proposed topological structural encoding.

 Recall that GTs update node representations by combining information from

all nodes in the graph (see section 5). Therefore, GTs can be seen as MPNNs on a

fully connected graph. This allows GTs to capture long range interactions, but at the

cost of losing local information. This is because on a fully connected graph, the

shortest path distance between every two nodes becomes 1, the degree of every node

becomes |𝑉| − 1, and the 𝑘-hop neighborhood of every node becomes the same.

Without extra information, GTs will not be able to recover important local

information that are crucial for prediction.

 Structural encoding aims to compensate for the missing local information in

GTs by concatenating the input node attributes with a vector that contains local

structure information. To accomplish this, the structural encoding of a node should

depend on some 𝑘-hop neighborhood of the node. Also, the structural encoding of two

node should be close when the 𝑘-hop neighborhood of the two node are similar.

 One of the simpliest structural encoding is the degree encoding. Degree

encoding computes the degree of a node deg 𝑣𝑖 and concatenate it with the

corresponding node attribute 𝑋𝑖, and can provide information about the 1-hop

neighborhood of a node. Another structural encoding is the random-walk encoding

[12]. Random-walk encoding computes the 𝑘-step random-walk matrix and uses its

diagonal as structural encoding.

Definition 13 (𝑘-step random-walk matrix) The 𝑘-step random-walk matrix is defined

as

𝐴̂𝑘 = (𝐷−1𝐴)𝑘

where 𝐴 is the adjacency matrix and 𝐷 is the degree matrix.

 The element 𝐴̂𝑖𝑖
𝑘 on the diagonal of the 𝑘-step random-walk matrix represents

the 𝑘-step return probability of a random walk starting from node 𝑣𝑖, which depends

on the structure of the 𝑘-hop neighborhood of 𝑣𝑖. Therefore 𝐴̂𝑖𝑖
𝑘 can be used as

structural encoding for 𝑣𝑖. In practice, 𝐴̂1, 𝐴̂2, ⋯ , 𝐴̂𝑘 are all computed, and the

diagonal elements 𝐴̂𝑖𝑖
1 , 𝐴̂𝑖𝑖

2 , ⋯ , 𝐴̂𝑖𝑖
𝑘 are concatenated with the input node attribute 𝑋𝑖.

 Motivated by the success of cell complex neural network and the necessity of

structural encoding, we proposed a novel structural encoding based on cell complex.

Definition 14 (Topological structural encoding) Given a cell complex of dimension 2

(𝑉, 𝐸, 𝑃), the topological structural encoding of an edge 𝑒𝑖 is defined as

𝑇𝑆𝐸(𝑒𝑖) = [

|𝐶(𝑒𝑖)|

|𝑁𝑙(𝑒𝑖)|

|𝑁𝑢(𝑒𝑖)|
]

 Different from degree encoding and random-walk encoding, our proposed

TSE is concatenated with the input edge attributes instead of node attributes. It can be

seen that TSE is equivalent to degree encoding if the edge 𝑒𝑖 is changed to node 𝑣𝑖 in

the definition of TSE by corollary 1 in section 2. Therefore, our proposed TSE can be

seen as a natural generalization of degree encoding to edges.

Section 8

Experiments

 In this section, we replace the self attention of Specformer introduced in

section 5 by our efficient third order self attention (ETOSA), and test our proposed

TSE on 8 small datasets from ADMET benchmark group [13]. ADMET benchmark

group consists of 22 datasets for prediction of absorption, distribution, metabolism,

excretion and toxicity (ADMET) properites of drugs. Results are shown in Table 1

and Table 2.

We also compared our efficient third order self attention with the original third

order self attention in terms of computation time and memory usage on the DILI

dataset. Results are shown in Table 3.

Details for datasets and experimental setup can be found in Appendix.

 Bioavailability
CYP2C9

Substrate

CYP2D6

Substrate

CYP3A4

Substrate

Specformer 0.620 ± 0.038 0.402 ± 0.022 0.673 ± 0.029 0.611 ± 0.023

Specformer +

TSE
0.647 ± 0.029 0.426 ± 0.023 0.696 ± 0.012 0.604 ± 0.023

Specformer +

ETOSA
0.617 ± 0.015 0.423 ± 0.020 0.662 ± 0.028 0.593 ± 0.021

Specformer +

TSE + ETOSA
0.636 ± 0.027 0.412 ± 0.028 0.653 ± 0.033 0.592 ± 0.036

Table 1: Results on ADMET benchmark group. Shown is the mean ± s.d. for 5 runs.

 DILI hERG HIA Pgp

Specformer 0.912 ± 0.003 0.813 ± 0.043 0.987 ± 0.005 0.889 ± 0.003

Specformer +

TSE
0.888 ± 0.020 0.849 ± 0.013 0.978 ± 0.005 0.881 ± 0.008

Specformer +

ETOSA
0.917 ± 0.013 0.777 ± 0.011 0.979 ± 0.007 0.869 ± 0.043

Specformer +

TSE + ETOSA
0.905 ± 0.008 0.820 ± 0.029 0.981 ± 0.006 0.872 ± 0.007

Table 2: Results on ADMET benchmark group. Shown is the mean ± s.d. for 5 runs.

Specformer with original

third order self attention

Specformer with efficient

third order self attention

AUROC 0.907 ± 0.014 0.917 ± 0.013

Computation time (s) 142 11

Memory Usage (MiB) 1566 1456

Number of parameters 341381 357765

Table 3: Results on DILI dataset. Shown is the mean ± s.d. for 5 runs.

Figure: Performance of Specformer during training on ADMET benchmark group.

Section 9

Conclusion

 We implemented a modification of a recently proposed higher order self

attention using tensor operations efficiently, and applied it to a graph neural network

with a novel structural encoding. Experiments on molecular graph datasets show that

our modified higher order self attention is more efficient than the original higher order

self attention, and our proposed structural encoding improves the performance of the

graph neural network.

 However, even though theoretically higher order self attention is more

expressive than vanilla self attention, we observe that higher order self attention

actually perform worse than the vanilla self attention on some datasets. One possible

reason is that using higher order self attention layer may induce a bias in the model

towards capturing higher order interactions, but not every dataset exhibits higher

order interactions. A possible solution may be combining vanilla self attention with

higher order self attention to counteract this bias.

Reference

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[2] Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths

and limitations of transformers. Advances in Neural Information Processing Systems,

36, 2024.

[3] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.

SIAM review, 51(3):455–500, 2009.

[4] Namgil Lee and Andrzej Cichocki. Fundamental tensor operations for large-scale

data analysis in tensor train formats. arXiv preprint arXiv:1405.7786, 2014.

[5] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F

Montufar, and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks.

Advances in neural information processing systems, 34:2625–2640, 2021.

[6] Mikhail Usvyatsov, Rafael Ballester-Ripoll, and Konrad Schindler. tntorch: Tensor

network learning with PyTorch. Journal of Machine Learning Research, 23(208):1–6,

2022.

[7] Shanshan Tang, Bo Li, and Haijun Yu. Chebnet: Efficient and stable constructions

of deep neural networks with rectified power units via chebyshev approximations.

arXiv preprint arXiv:1911.05467, 2019.

[8] Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph

spectral filters via bernstein approximation. Advances in Neural Information

Processing Systems, 34:14239–14251, 2021.

[9] Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural

networks. In International Conference on Machine Learning, pages 23341–23362.

PMLR, 2022.

[10] Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph

neural networks meet transformers. arXiv preprint arXiv:2303.01028, 2023.

[11] Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania

Sardellitti, and Sergio Barbarossa. Cell attention networks. In 2023 International Joint

Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2023.

[12] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and

Xavier Bresson. Graph neural networks with learnable structural and positional

representations. arXiv preprint arXiv:2110.07875, 2021.

[13] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure

Leskovec, Connor W Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics

data commons: Machine learning datasets and tasks for drug discovery and

development. arXiv preprint arXiv:2102.09548, 2021.

[14] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017.

Appendix

Datasets

Name Size Task Metric

Bioavailability 640 Classification AUROC

CYP2C9 Substrate 666 Classification AUPRC

CYP2D9 Substrate 664 Classification AUPRC

CYP3A4 Substrate 667 Classification AUROC

DILI 475 Classification AUROC

hERG 648 Classification AUROC

HIA 578 Classification AUROC

Pgp 1212 Classification AUROC

Table 3: Detailed information of datasets

Computational Resources All experiments are carried out on a cloud computing

platform with:

⚫ Operation system: Ubuntu 20.04

⚫ CPU information: 18 vCPU AMD EPYC 9754 128-Core Processor

⚫ GPU information: 1 GeForce RTX 4090D (24GB)

Data splitting For datasets from ADMET benchmark group, each dataset comes with

a predefined test set containing 20% of the data. As suggested in [13], we adopt

scaffold splitting to split the remaining data into a training set and a validation set

with split ratio 70/10, and this procedure is repeated for 5 different random seeds to

create 5 training sets and 5 validation sets.

Optimizer In all our experiments we used AdamW [14] optimizer, with the default

settings of 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8, together with linear warm-up

increase of the learning rate at the beginning of the training followed by its cosine

decay.

Model Selection For datasets from ADMET benchmark group, we choose the last

model checkpoint for evaluation.

Hyperparameters The hyperparameter settings are shown in Table 4 and Table 5.

Table 4: Hyperparameters for datasets from ADMET benchmark group

Hyperparameter Bioavailability CYP2C9 Substrate CYP2D6 Substrate CYP3A4 Substrate

Hidden dim 128 64 128 128
Layer 6 6 3 6
Head 4 4 4 4

Graph pooling Mean Mean Mean Mean

Architecture Small Small Small Small

Batch size 32 32 32 32
Epoch 10 10 10 10

Warmup 5 5 5 5
Learning rate 1e-4 1e-4 1e-4 1e-4
Weight decay 0 0 0 0

Transformer dropout 0.0 0.0 0.0 0.0
Feature dropout 0.0 0.0 0.0 0.0

Propagation dropout 0.0 0.0 0.0 0.0

Table 5: Hyperparameters for datasets from ADMET benchmark group

Hyperparameter DILI hERG HIA Pgp

Hidden dim 128 128 256 64
Layer 3 3 6 6
Head 4 4 4 4

Graph pooling Mean Mean Mean Mean

Architecture Small Small Small Small

Batch size 32 32 32 32
Epoch 10 10 10 10

Warmup 5 5 5 5
Learning rate 1e-4 1e-4 1e-4 1e-4
Weight decay 0 0 0 0

Transformer dropout 0.0 0.0 0.0 0.0
Feature dropout 0.0 0.0 0.0 0.0

Propagation dropout 0.0 0.0 0.0 0.0

