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Abstract 

 

 We modify a recently proposed higher order generalization of self attention 

mechanism and reduce its time complexity using tensor operations. Then the modified 

higher order self attention is applied to a graph neural network with a novel structural 

encoding based on cell complex from algebraic topology. Experiments on molecular 

graph benchmarks show that our modified higher order self attention is more efficient 

than the original higher order self attention, and our proposed structural encoding 

improves the performance of the graph neural network. 
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Section 1 

 

Introduction 

 

 In recent years, there has been a remarkable surge in the field of natural 

language processing and computer vision, thanks to the advancements in deep 

learning. One significant breakthrough that has revolutionized these domains is the 

introduction of the self-attention mechanism [1]. Self-attention has emerged as a 

powerful tool for modeling dependencies and capturing contextual information within 

a sequence of data, be it text or images. 

The key idea behind self-attention is to calculate attention weights by inner 

product between every pair of positions in the input sequence. These attention weights 

represent the importance or relevance of each position with respect to others. The 

attention weights are then used to compute weighted sums of the values associated 

with each position, resulting in a context vector that encapsulates the relevant 

information from the entire sequence. 

Intuitively, self attention captures pairwise interaction between positions in a 

sequence, but not higher order interaction. Recent work [2] has shown that self 

attention is unable to solve a simple task about learning the correlation between triples 

of words. To address this issue, the authors proposed a higher order self attention, but 

it was not implemented due to the expensive computational cost. 

Graph neural networks have emerged as an effective approach for tasks over 

graph-structured data, and structural encoding is crucial to the effectiveness of graph 

neural network. Motivated by the success of cell complex neural networks which are 

generalization to graph neural networks that can model higher order interactions, it is 

interesting to explore whether incorporating structural encoding based on cell 

complex can enhance the performance of graph neural networks. 



Contribution We modified the higher order self attention in [2] and implement it 

using tensor operations to reduce its time complexity from 𝑂(𝑁2𝑑2) to 𝑂(𝑁𝑑2). We 

also proposed a novel structural encoding for graph neural network which is an 

extension to the degree encoding. Experiments on various molecular graph datasets 

show that our modified higher order self attention is more efficient than the original 

formulation of the higher order self attention, and our proposed structural encoding 

can effectively enhance the performance of the graph neural network. 

  



Section 2 

 

Preliminary 

 

2.1 Tensor Operations and Decompositions 

In this subection, we will introduce some basic tensor operations and their 

properties, such as mode-n matricization, mode-n product and tensor contraction. We 

will also introduce the CP decomposition of a tensor and its properties. 

We use script letters (e.g. 𝒜,ℬ) to represent tensors and use italic letters (e.g. 

𝐴, 𝐵) to represent matrices. 

Definition 1 (mode-n matricization [3]) The mode-n matricization of a tensor 𝒯 ∈

ℝ𝐼1×𝐼2×⋯×𝐼𝑁 is a matrix 𝒯(𝑛) ∈ ℝ
𝐼𝑛×𝐼1𝐼2⋯𝐼𝑛−1𝐼𝑛+1⋯𝐼𝑁. 

 

Figure 1: A tensor of size 4x3x2 



 It is easier to understand the concept of mode-n matricization using an 

example. Let 𝒜 ∈ ℝ4×3×2 be the tensor as shown in figure 1. Then 

𝒜(1) = [

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

] 

𝒜(2) = [
1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24

] 

𝒜(3) = [
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
] 

 The mode-n product between a tensor and a matrix can be defined using the 

mode-n matricization. 

Definition 2 (mode-n product [3]) The mode-n product between a tensor 𝒯 ∈

ℝ𝐼1×𝐼2×⋯×𝐼𝑁 and a matrix 𝐴 ∈ ℝ𝐽×𝐼𝑛 results in a tensor 𝒯 ×𝑛 𝐴 ∈

ℝ𝐼1×⋯×𝐼𝑛−1×𝐽×𝐼𝑛+1×⋯×𝐼𝑁 with 

(𝒯 ×𝑛 𝐴)(𝑛) = 𝐴𝒯(𝑛) 

 Some useful properties of the mode-n product are included in the following 

lemma. 

Lemma 1 (Properties of mode-n product [3]) Let 𝒯 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁 and 𝐴𝑛 ∈ ℝ
𝐽𝑛×𝐼𝑛. 

1. 𝒯 ×𝑚 𝐴𝑚 ×𝑛 𝐴𝑛 = 𝒯 ×𝑛 𝐴𝑛 ×𝑚 𝐴𝑚 for 𝑚 ≠ 𝑛 

2. For 𝐵𝑛 ∈ ℝ
𝐾𝑛×𝐽𝑛, 𝒯 ×𝑛 𝐴𝑛 ×𝑛 𝐵𝑛 = 𝒯 ×𝑛 (𝐵𝑛𝐴𝑛) 

 The CP decomposition of a tensor can be defined using the mode-n product. 

Definition 3 (CP decomposition [4]) The CP decomposition decompose a tensor 𝒯 ∈

ℝ𝐼1×𝐼2×⋯×𝐼𝑁 into a superdiagonal tensor ℐ𝑅 ∈ ℝ
𝑅×⋯×𝑅 with diagonal 1,… ,1 

multiplied by a factor matrix 𝐴𝑛 ∈ ℝ
𝐼𝑛×𝑅 on each mode as 

𝒯 = ℐ𝑅 ×1 𝐴1 ×2 𝐴2⋯×𝑛 𝐴𝑁 

where 𝑅 ∈ ℕ is called the CP rank of 𝒯. 

 The relation between the mode-n matricization of a tensor 𝒯 and its CP 

decomposition is given in the following lemma. 



Lemma 2 ([3]) 𝒯 = ℐ𝑅 ×1 𝐴1 ×2 𝐴2⋯×𝑁 𝐴𝑛 ⟺𝒯(𝑛) = 𝐴𝑛(𝐴𝑁⊙⋯⊙𝐴𝑛+1⊙

𝐴𝑛−1⊙⋯⊙𝐴1)
𝑇, where ⊙ is the column-wise Kronecker product. 

 We also introduce the definition of tensor contraction. 

Definition 4 (Tensor contraction) Given 𝒜 ∈ ℝ𝐼1×𝐾1×𝐾2 and ℬ ∈ ℝ𝐽1×𝐾1×𝐾2. A tensor 

contraction over 2 modes results in a tensor 𝒜 ⋅ ℬ ∈ ℝ𝐼1×𝐽1 with 

(𝒜 ⋅ ℬ)𝑖1𝑗1 = ∑ ∑ 𝒜𝑖1𝑘1𝑘2ℬ𝑗1𝑘1𝑘2

𝐾2

𝑘2=1

𝐾1

𝑘1=1

 

 

2.2 Cell Complex 

 In this subsection, we will introduce the definition of cell complex, a 

fundamental building block of algebraic topology. 

Definition 5 (Regular cell complex [5]) A regular cell complex is a topological space 

𝑋 together with a partition {𝑋𝜎}𝜎∈𝑃𝑋  of subspaces 𝑋𝜎 of 𝑋 such that: 

1. For each 𝑥 ∈ 𝑋, every sufficiently small neighborhood of 𝑥 intersects finitely 

many 𝑋𝜎. 

2. For all 𝜏, 𝜎 ∈ 𝑃𝑋, we have that 𝑋𝜏 ∩ 𝑋𝜎̅̅̅̅ ≠ ∅ if and only if 𝑋𝜏 ⊆ 𝑋𝜎̅̅̅̅ . 

3. Every 𝑋𝜎 is homeomorphic to ℝ𝑛𝜎 for some 𝑛𝜎. 

4. For every 𝜎 ∈ 𝑃𝑋, there is a homeomorphism 𝜙 of a closed ball in ℝ𝑛𝜎 to 𝑋𝜎̅̅̅̅  

such that the restriction of 𝜙 to the interior of the ball is a homeomorphism onto 

𝑋𝜎. 

 In addition, we define 𝜏 ≤ 𝜎 ⟺ 𝑋𝜏 ⊆ 𝑋𝜎̅̅̅̅  and 𝜏 < 𝜎 ⟺ 𝑋𝜏 ⊂ 𝑋𝜎̅̅̅̅ . 

 A 𝑘-cell is a cell 𝜎 ∈ 𝑃𝑋 with 𝑛𝜎 = 𝑘. For example, a 0-cell is a point, a 1-cell 

is a line segment without its endpoint, and a 2-cell is the interior of a polygon. 

A cell complex 𝑋 is of dimension 𝑘 if 𝑛𝜎 ≤ 𝑘 for all 𝜎 ∈ 𝑃𝑋 and there is at 

least one 𝜏 ∈ 𝑃𝑋 such that 𝑛𝜏 = 𝑘. An example of a cell complex of dimension 2 is 

shown in Figure 2. 



 

Figure 2 ([5]): A cell complex of dimension 2 

In practice, we only consider cell complexes of dimension 𝑘 ≤ 2. A cell 

complex of dimension 2 can be represented by a 3-tuple (𝑉, 𝐸, 𝑃), where 𝑉, 𝐸, 𝑃 are 

the sets of 0-cells (vertices), 1-cells (edges) and 2-cells (polygons) respectively. Also, 

a graph 𝐺 = (𝑉, 𝐸) can be seen as a cell complex of dimension 1, where the set of 0-

cells is the set of vertices 𝑉 and the set of 1-cells is the set of edges 𝐸. 

Intuitively, a cell complex is formed by gluing cells together in a way that 

every (𝑘 − 1)-cell is either on the boundary of some 𝑘-cells, or has no intersection 

with the boundary of any 𝑘-cells. Therefore, the structure of a cell complex can be 

described by a boundary relation. The boundary relation describes which cells are on 

the boundary of other cells. 

Definition 6 (Boundary relation [5]) Given two cells 𝜎, 𝜏 ∈ 𝑃𝑋, we have the boundary 

relation 𝜎 ≺ 𝜏 if 𝜎 < 𝜏 and there is no 𝛿 such that 𝜎 < 𝛿 < 𝜏. 

 We can use the boundary relation to define four types of adjacencies present in 

cell complexes. 

Definition 7 (Cell complex adjacencies [5]) For a cell complex 𝑋 and a cell 𝜎 ∈ 𝑃𝑋, 

we define: 

1. The boundary adjacent cells 𝐵(𝜎) = {𝜏 | 𝜏 ≺ 𝜎}. These are the lower-

dimensional cells on the boundary of 𝜎. For example, the boundary adjacent cells 

of an edge are its vertices, and the boundary adjacent cells of a polygon are its 

edges. 



2. The co-boundary adjacent cells 𝐶(𝜎) = {𝜏 | 𝜎 ≺ 𝜏}. These are the higher-

dimensional cells with 𝜎 on its boundary. For example, the co-boundary adjacent 

cells of a vertex are the edges having the vertex as an endpoint, and the co-

boundary adjacent cells of an edge are the polygons having the edge as one of its 

sides. 

3. The lower adjacent cells 𝑁𝑙(𝜎) = {𝜏 | ∃𝛿 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛿 ≺ 𝜎 𝑎𝑛𝑑 𝛿 ≺ 𝜏} =

{𝜏 | 𝐵(𝜎) ∩ 𝐵(𝜏) ≠ ∅}. These are the cells of the same dimension as 𝜎 with a 

lower dimensional cells on the boundary of 𝜎 on their boundary. For example, 

the lower adjacent cells of an edge 𝑒𝑖 are edges that shares a common endpoint 

with 𝑒𝑖, and the lower adjacent cells of a polygon 𝑝𝑖 are polygons that shares a 

common side with 𝑝𝑖. 

4. The upper adjacent cells 𝑁𝑢(𝜎) = {𝜏 | ∃𝛿 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜎 ≺ 𝛿 𝑎𝑛𝑑 𝜏 ≺ 𝛿} =

{𝜏 | 𝐶(𝜎) ∩ 𝐶(𝜏) ≠ ∅}. These are the cells of the same dimension as 𝜎 on the 

boundary of a higher-dimensional cells with 𝜎 on its boundary. For example, the 

upper adjacent cells of a vertex 𝑣𝑖 are vertices that are connected to 𝑣𝑖 by an 

edge, and the upper adjacent cells of an edge 𝑒𝑖 are edges that are the sides of 

polygons with 𝑒𝑖 as one of its sides. 

Corollary 1 Given a graph 𝐺 = (𝑉, 𝐸) and a vertex 𝑣𝑖, the number of co-boundary 

adjacent cells |𝐶(𝑣𝑖)| and the number of upper adjacent cells |𝑁𝑢(𝑣𝑖)| of 𝑣𝑖 is equal 

to deg 𝑣𝑖. Also the number of boundary adjacent cells |𝐵(𝑣𝑖)| and the number of 

lower adjacent cells |𝑁𝑙(𝑣𝑖)| of a vertex 𝑣𝑖 is equal to 0. 

 Given a graph 𝐺 = (𝑉, 𝐸), one can construct an associated cell complex of 

dimension 2 by attaching 2-cells to all chordless cycles in the graph as shown in 

Figure 3. 



 

Figure 3: A graph and its associated cell complex of dimension 2 

Definition 8 (Chordless cycle) A chordless cycle in a graph is a cycle such that no two 

vertices of the cycle are connected by an edge that does not itself belong to the cycle. 

 

Figure 4: A chordless cycle (green) and a cycle that is not chordless (red) 

  



Section 3 

 

Self attention and its generalization 

 

 Self attention [1], since its proposal, have been widely used in the field of 

natural language processing and computer vision. Based on self attention, famous 

large language model and generative model, such as GPT-4 and Sora, have been 

developed. 

 In this section, we will introduce the vanilla self attention and a recently 

proposed higher order generalization of self attention. 

Definition 9 (self attention [1]) Given 𝑁 input vectors with dimension 𝑑, written in 

matrix form 𝑋 ∈ ℝ𝑁×𝑑, the self attention 𝑓:ℝ𝑁×𝑑 → ℝ𝑁×𝑑 computes 

𝑓(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)𝑉 

where 𝑄 = 𝑋𝑊𝑄, 𝐾 = 𝑋𝑊𝐾 and 𝑉 = 𝑋𝑊𝑉 are three different learnable linear 

transformation of 𝑋. 

 This can be rewritten as 

𝑓(𝑋)𝑖 =∑𝐴𝑖𝑗𝑉𝑗

𝑁

𝑗=1

= (∑𝐴𝑖𝑗𝑋𝑗

𝑁

𝑗=1

)𝑊𝑉 

where 

𝐴𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)
𝑖𝑗

=
exp(𝑋𝑖𝑊𝑄𝑊𝐾

𝑇𝑋𝑗
𝑇/√𝑑)

∑ exp(𝑋𝑖𝑊𝑄𝑊𝐾
𝑇𝑋𝑗

𝑇/√𝑑)𝑁
𝑗=1

 



Essentially, self attention updates each input vector by computing a weighted 

sum of all input vectors followed by a linear transformation, where the weights 

depend on every pair of input vector. 

Intuitively, self attention can model pairwise interaction in the input vectors 

since the effect of a specific input vector on the output is affected by the values of 

other input vectors. However, it is unclear whether self attention can model triplewise 

or higher order interaction in the input vectors. 

Recently, [2] has shown that self attention cannot capture triplewise 

interaction. They defined a task related to learning correlation between triples of 

words, and show that it cannot be solved using self attention. To deal with this 

limitation, they proposed a higher order generalization of self attention using column-

wise Kronecker product. 

Definition 10 (𝑠-order self attention [2]) For order 𝑠 ≥ 2, input matrix 𝑋 ∈ ℝ𝑁×𝑑 and 

matrices 𝑄,𝐾1, 𝐾2, 𝑉1, 𝑉2 ∈ ℝ
𝑑×𝑑, 𝑠-order self attention 𝑓:ℝ𝑁×𝑑 → ℝ𝑁×𝑑 computes 

𝑓(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ( 𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙⋯⊙ (𝑋𝐾𝑠−1))
𝑇

⏟                

ℝ𝑑×𝑁
𝑠−1

)((𝑋𝑉1) ⊙⋯⊙ (𝑋𝑉𝑠−1))⏟                

ℝ𝑁
𝑠−1×𝑑

 

When 𝑠 = 3, we obtain the third order self attention. 

𝑓(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ( 𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟            

ℝ𝑑×𝑁
2

)((𝑋𝑉1) ⊙ (𝑋𝑉2))⏟          

ℝ𝑁
2×𝑑

 

 The author in [2] did not implement the third order attention due to its 

expensive computational cost when computing 𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟            

ℝ𝑑×𝑁
2

 which 

requires 𝑂(𝑁3𝑑) time if the classic matrix multiplication algorithm is used. 

  



Section 4 

 

Efficient third order self attention 

 

 In this section, we will simplify and rewrite the third order attention using 

tensor operations. 

 We first simplify the third order self attention by omitting the exponential 

function in the softmax operator. The simplified third order attention computes 

𝑓(𝑋) = 𝐷−1 ( 𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟            

ℝ𝑑×𝑁
2

)((𝑋𝑉1) ⊙ (𝑋𝑉2))⏟          

ℝ𝑁
2×𝑑

 

where 𝐷 = 𝑑𝑖𝑎𝑔( 𝑋𝑄⏟
ℝ𝑁×𝑑

((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟            

ℝ𝑑×𝑁
2

𝟏𝑁2×1) ∈ ℝ
𝑁×𝑁 can be computed in 

𝑂(𝑁2𝑑). However the product ((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇

⏟            

ℝ𝑑×𝑁
2

((𝑋𝑉1) ⊙ (𝑋𝑉2))⏟          

ℝ𝑁
2×𝑑

 still requires 

𝑂(𝑁2𝑑2) time. Therefore, we rewrite the simplified third order self attention using 

tensor operations. 

Theorem 1 Let 𝒜 = ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1 and ℬ = ℐ𝑑 ×2 𝑉2 ×3 𝑉1. Then 

(𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋)(1) = 𝑋𝑄((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇
 and (ℬ ×2 𝑋 ×3 𝑋)(1) =

((𝑋𝑉1) ⊙ 𝑋(𝑉2))
𝑇
. 

Proof: 𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 = ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1 ×1 𝑋 ×2 𝑋 ×3 𝑋 

= ℐ𝑑 ×1 𝑄 ×1 𝑋 ×2 𝐾2 ×2 𝑋 ×3 𝐾1 ×3 𝑋 (Lemma 1 property 1) 

= ℐ𝑑 ×1 𝑋𝑄 ×2 𝑋𝐾2 ×3 𝑋𝐾1 (Lemma 1 property 2) 

Therefore (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋)(1) = (ℐ𝑑 ×1 𝑋𝑄 ×2 𝑋𝐾2 ×3 𝑋𝐾1)(1) 



= 𝑋𝑄((𝑋𝐾1) ⊙ (𝑋𝐾2))
𝑇
 (Lemma 2) 

The proof for (ℬ ×2 𝑋 ×3 𝑋)(1) = ((𝑋𝑉1) ⊙ 𝑋(𝑉2))
𝑇
 is similar. 

Corollary 2 Let 𝒜 = ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1 and ℬ = ℐ𝑑 ×2 𝑉2 ×3 𝑉1. Then 

((𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) ⋅ (ℬ ×2 𝑋 ×3 𝑋))(1) = 𝐷

−1𝑋𝑄((𝑋𝐾1) ⊙

(𝑋𝐾2))
𝑇
((𝑋𝑉1) ⊙ 𝑋(𝑉2)) 

 The advantage of this formulation of the simplified third order attention is that 

the CP decomposition of the mode-n product 𝒜 ×𝑛 𝑋 and the tensor contraction 𝒜 ⋅

ℬ can be computed from the CP decomposition of 𝒜 and ℬ efficiently [6]. For 

example, the CP decomposition of the mode-n product 𝒜 ×1 𝑋 can be computed in 

𝑂(𝑁𝑑2) time using Lemma 1 property 2 given the CP decomposition of 𝒜 =

ℐ𝑑 ×1 𝑄 ×2 𝐾2 ×3 𝐾1. Also, (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) ⋅ (ℬ ×2 𝑋 ×3 𝑋) and 𝐷 

(which can be thought as computing the tensor contraction (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋) ⋅

𝟏1×𝑁×𝑁) can be computed in 𝑂(𝑁𝑑2) time using similar technique. 

 We introduce our proposed efficient third order self attention layer. 

Definition 11 (efficient third order self attention) Given 𝑋 ∈ ℝ𝑛×𝑑, the efficient third 

order self attention 𝑓:ℝ𝑁×𝑑 → ℝ𝑁×𝑑 computes 

𝑓(𝑋) = (𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) ⋅ (ℬ ×2 𝑋 ×3 𝑋) 

where 𝒜 and ℬ are tensors with CP rank 𝑑 and learnable factor matrices. The 

elements in the factor matrices of 𝒜 are initialized from 𝑁(0,1/𝑑4) and the elements 

in the factor matrices of ℬ are initialized from 𝑁(0,1/𝑑3). 

 We fix the factor matrices of 𝒜 and ℬ to have CP rank 𝑑 to ensure the 

efficient third order self attention have approximately the same number of learnable 

parameters as the original third order self attention. The elements in the factor 

matrices of 𝒜 and ℬ are initialized in a way that the elements of 

(𝒜 ×1 𝑋 ×2 𝑋 ×3 𝑋 ×1 𝐷
−1) and the elements of (ℬ ×2 𝑋 ×3 𝑋) will have 

approximately unit variance when the elements of 𝑋 have unit variance.  



Section 5 

 

Graph Neural Network 

 

 In this section, we will describe how to apply the efficient third order attention 

in a Graph Neural Network (GNN) for graph classification. 

 Given a graph 𝐺 = (𝑉, 𝐸) with node attributes 𝑋 ∈ ℝ|𝑉|×𝑑, we aim to predict 

the class which the graph belongs to. This usually involves the following three steps. 

Step 1: Use a GNN to update the node representation, i.e., 𝑋̂ = 𝐺𝑁𝑁(𝑋, 𝐺) ∈ ℝ|𝑉|×𝑑 

Step 2: Use a permutation-invariant readout function (e.g. mean, sum, max) to obtain 

the graph representation, i.e., 𝑌̂ = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡(𝑋̂) ∈ ℝ𝑑 

Step 3: The graph representation 𝑌̂ is further transformed depending on the task. For a 

graph classification task, 𝑌̂ is mapped to a one-hot encoded vector. 

 GNNs can be divided into 3 caterogies: Message Passing Neural Network 

(MPNN), Graph Transformer (GT) and Spectral Graph Neural Network (SGNN). 

 MPNNs update node representations by aggregating information from 

neighboring nodes. The node representation of node 𝑣𝑖 is updated by 

𝑋̂𝑖 = 𝑓 (𝑋𝑖, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑣𝑗∈𝑁(𝑣𝑖) (𝑔(𝑋𝑖, 𝑋𝑗))) 

where 𝑓 and 𝑔 are learnable functions, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 is a permutation-invariant 

function and 𝑁(𝑣𝑖) is the neighborhood of node 𝑣𝑖. By stacking 𝑘 layers of MPNN, 

the node representation 𝑋̂𝑖 can capture information from the 𝑘-hop neighborhood of 

node 𝑣𝑖. 



 GTs update node representations by combining information from all nodes in 

the graph using self attention mechanism. 

𝑋̂𝑖 = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋)𝑖 

 The updated node representation by GTs of node 𝑣𝑖 depends on the node 

representation of all nodes in the graph, unlike the updated node representation by 

MPNNs which only depends on the node representation of the neighborhood of node 

𝑖. Therefore GTs can capture longer range interaction than MPNNs but with a higher 

computational cost. 

 Different from MPNNs and GTs, SGNNs update the node representation by 

utilizing the eigendecomposition of the symmetrically normalized graph laplacian. 

Definition 12 (symmetrically normalized graph laplacian) For a graph 𝐺 = (𝑉, 𝐸) 

with 𝑁 nodes, the symmetrically normalized graph laplacian 𝐿 ∈ ℝ𝑁×𝑁 is defined as 

𝐿𝑖,𝑗 =

{
 

 
1 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 deg 𝑣𝑖 ≠ 0

−
1

√deg 𝑣𝑖 deg 𝑣𝑗
𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑣𝑖  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Since the symmetrically normalized graph laplacian is symmetric, it admits an 

eigendecomposition 𝐿 = 𝑈Λ𝑈𝑇 where 𝑈𝑈𝑇 = 𝑈𝑇𝑈 = 𝐼𝑁 and Λ = 𝑑𝑖𝑎𝑔(𝜆) =

𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛). 

 SGNNs update the node representation in three steps: 

Step 1: 𝑋̅ = 𝑈𝑇𝑋 (Graph Fourier Transform) 

Step 2: 𝑋̃ = 𝑓(Λ)𝑋̅ (Filtering) 

Step 3: 𝑋̂ = 𝑈𝑋̅ (Inverse Graph Fourier Transform) 

 Therefore the updated node representation can be written as 𝑋̂ = 𝑈𝑓(Λ)𝑈𝑇𝑋. 

 In SGNNs, 𝑓 is usually a polynomial acting elementwisely on the diagonal of 

Λ, such as Chebyshev polynomial [7], Bernstein polynomial [8] and Jacobi 

polynomial [9]. Using the property 𝑈𝑝(Λ)𝑈𝑇 = 𝑝(𝑈Λ𝑈𝑇) = 𝑝(𝐿) where 𝑝 is a 

polynomial, polynomial SGNN can avoid computing the expensive eigenvalue 

decomposition. Also, a 𝑘-th order polynomial SGNN updates the node representation 



of a node 𝑣𝑖 using information in its 𝑘-hop neighborhood, due to the fact that 𝐿𝑖,𝑗
𝑘 ≠ 0 

when 𝑣𝑗  is in the 𝑘-hop neighborhood of 𝑣𝑖. 

 Recently, [10] proposed Specformer by replacing 𝑓 by self attention 

mechanism. The eigenvalues 𝜆 ∈ ℝ𝑁 is mapped to vectors 𝜆̂ ∈ ℝ𝑁×𝑑, and 𝜆̂ is 

updated by self attention instead of a polynomial. They showed that Specformer can 

outperform polynomial SGNN due to the fact that self attention can capture 

interaction between eigenvalues while the elementwise polynomial cannot. 

  



Section 6 

 

Cell Complex Neural Network 

 
 In this section, we will introduce cell complex neural network, which is 

generalization of graph neural network to cell complex. 

 Cell complex neural network is motivated by the fact that graph can only 

model pairwise relation between nodes, therefore unable to model long-range and 

group interactions consistently. On the other hand, cell complex can model higher-

dimensional structures and higher-order interaction, which is crucial for applications 

such as social network and molecular chemistry, since social interaction can involve 

more that two people and electrostatic interaction can involve more that two atoms. 

 [5] proposed CIN which is a MPNN on cell complex. CIN computes a cell 

representation (including node representation, edge representation and polygon 

representation) for every cell in the associated cell complex of dimension 2 

constructed from a molecular graph. Then the cell representation is updated by 

aggregating information from the cell’s boundary neighborhood, co-boundary 

neighborhood, lower neighborhood and upper neighborhood simultaneously. Finally, 

readout functions are applied to the node representations, edge representations and 

polygon representations respectively to obtain three different graph representations, 

which are further combined to obtain the final graph representation. 

 [11] proposed CAN which is also a MPNN on cell complex. Different from 

CIN, CAN first combine the node representations with the edge representations. Then 

only the edge representations are updated by combining information from the edges in 

the lower neighborhood and upper neighborhood of an edge. Finally, a readout 

function is applied to the edge representations to obtain the graph representation. 

  



Section 7 

 

Topological Structural Encoding 

 
 In this section, we will introduce structural encoding for graph transformers 

(GTs) and our proposed topological structural encoding. 

 Recall that GTs update node representations by combining information from 

all nodes in the graph (see section 5). Therefore, GTs can be seen as MPNNs on a 

fully connected graph. This allows GTs to capture long range interactions, but at the 

cost of losing local information. This is because on a fully connected graph, the 

shortest path distance between every two nodes becomes 1, the degree of every node 

becomes |𝑉| − 1, and the 𝑘-hop neighborhood of every node becomes the same. 

Without extra information, GTs will not be able to recover important local 

information that are crucial for prediction. 

 Structural encoding aims to compensate for the missing local information in 

GTs by concatenating the input node attributes with a vector that contains local 

structure information. To accomplish this, the structural encoding of a node should 

depend on some 𝑘-hop neighborhood of the node. Also, the structural encoding of two 

node should be close when the 𝑘-hop neighborhood of the two node are similar. 

 One of the simpliest structural encoding is the degree encoding. Degree 

encoding computes the degree of a node deg 𝑣𝑖 and concatenate it with the 

corresponding node attribute 𝑋𝑖, and can provide information about the 1-hop 

neighborhood of a node. Another structural encoding is the random-walk encoding 

[12]. Random-walk encoding computes the 𝑘-step random-walk matrix and uses its 

diagonal as structural encoding. 

  



Definition 13 (𝑘-step random-walk matrix) The 𝑘-step random-walk matrix is defined 

as 

𝐴̂𝑘 = (𝐷−1𝐴)𝑘 

where 𝐴 is the adjacency matrix and 𝐷 is the degree matrix. 

 The element 𝐴̂𝑖𝑖
𝑘  on the diagonal of the 𝑘-step random-walk matrix represents 

the 𝑘-step return probability of a random walk starting from node 𝑣𝑖, which depends 

on the structure of the 𝑘-hop neighborhood of 𝑣𝑖. Therefore 𝐴̂𝑖𝑖
𝑘  can be used as 

structural encoding for 𝑣𝑖. In practice, 𝐴̂1, 𝐴̂2, ⋯ , 𝐴̂𝑘 are all computed, and the 

diagonal elements 𝐴̂𝑖𝑖
1 , 𝐴̂𝑖𝑖

2 , ⋯ , 𝐴̂𝑖𝑖
𝑘  are concatenated with the input node attribute 𝑋𝑖. 

 Motivated by the success of cell complex neural network and the necessity of 

structural encoding, we proposed a novel structural encoding based on cell complex. 

Definition 14 (Topological structural encoding) Given a cell complex of dimension 2 

(𝑉, 𝐸, 𝑃), the topological structural encoding of an edge 𝑒𝑖 is defined as 

𝑇𝑆𝐸(𝑒𝑖) = [

|𝐶(𝑒𝑖)|

|𝑁𝑙(𝑒𝑖)|

|𝑁𝑢(𝑒𝑖)|
] 

 Different from degree encoding and random-walk encoding, our proposed 

TSE is concatenated with the input edge attributes instead of node attributes. It can be 

seen that TSE is equivalent to degree encoding if the edge 𝑒𝑖 is changed to node 𝑣𝑖 in 

the definition of TSE by corollary 1 in section 2. Therefore, our proposed TSE can be 

seen as a natural generalization of degree encoding to edges. 

  



Section 8 

 

Experiments 

 

 In this section, we replace the self attention of Specformer introduced in 

section 5 by our efficient third order self attention (ETOSA), and test our proposed 

TSE on 8 small datasets from ADMET benchmark group [13]. ADMET benchmark 

group consists of 22 datasets for prediction of absorption, distribution, metabolism, 

excretion and toxicity (ADMET) properites of drugs. Results are shown in Table 1 

and Table 2. 

We also compared our efficient third order self attention with the original third 

order self attention in terms of computation time and memory usage on the DILI 

dataset. Results are shown in Table 3. 

Details for datasets and experimental setup can be found in Appendix. 

 Bioavailability 
CYP2C9 

Substrate 

CYP2D6 

Substrate 

CYP3A4 

Substrate 

Specformer 0.620 ± 0.038 0.402 ± 0.022 0.673 ± 0.029 0.611 ± 0.023 

Specformer + 

TSE 
0.647 ± 0.029 0.426 ± 0.023 0.696 ± 0.012 0.604 ± 0.023 

Specformer + 

ETOSA 
0.617 ± 0.015 0.423 ± 0.020 0.662 ± 0.028 0.593 ± 0.021 

Specformer + 

TSE + ETOSA 
0.636 ± 0.027 0.412 ± 0.028 0.653 ± 0.033 0.592 ± 0.036 

Table 1: Results on ADMET benchmark group. Shown is the mean ± s.d. for 5 runs. 

  



 DILI hERG HIA Pgp 

Specformer 0.912 ± 0.003 0.813 ± 0.043 0.987 ± 0.005 0.889 ± 0.003 

Specformer + 

TSE 
0.888 ± 0.020 0.849 ± 0.013 0.978 ±  0.005 0.881 ± 0.008 

Specformer + 

ETOSA 
0.917 ± 0.013 0.777 ± 0.011 0.979 ± 0.007 0.869 ± 0.043 

Specformer + 

TSE + ETOSA 
0.905 ± 0.008 0.820 ± 0.029 0.981 ± 0.006 0.872 ± 0.007 

Table 2: Results on ADMET benchmark group. Shown is the mean ± s.d. for 5 runs. 

 
Specformer with original 

third order self attention 

Specformer with efficient 

third order self attention 

AUROC 0.907 ± 0.014 0.917 ± 0.013 

Computation time (s) 142 11 

Memory Usage (MiB) 1566 1456 

Number of parameters 341381 357765 

Table 3: Results on DILI dataset. Shown is the mean ± s.d. for 5 runs. 

 

 



 

 

Figure: Performance of Specformer during training on ADMET benchmark group. 

  



Section 9 

 

Conclusion 

 

 We implemented a modification of a recently proposed higher order self 

attention using tensor operations efficiently, and applied it to a graph neural network 

with a novel structural encoding. Experiments on molecular graph datasets show that 

our modified higher order self attention is more efficient than the original higher order 

self attention, and our proposed structural encoding improves the performance of the 

graph neural network. 

 However, even though theoretically higher order self attention is more 

expressive than vanilla self attention, we observe that higher order self attention 

actually perform worse than the vanilla self attention on some datasets. One possible 

reason is that using higher order self attention layer may induce a bias in the model 

towards capturing higher order interactions, but not every dataset exhibits higher 

order interactions. A possible solution may be combining vanilla self attention with 

higher order self attention to counteract this bias. 
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Appendix 

 

Datasets 

Name Size Task Metric 

Bioavailability 640 Classification AUROC 

CYP2C9 Substrate 666 Classification AUPRC 

CYP2D9 Substrate 664 Classification AUPRC 

CYP3A4 Substrate 667 Classification AUROC 

DILI 475 Classification AUROC 

hERG 648 Classification AUROC 

HIA 578 Classification AUROC 

Pgp 1212 Classification AUROC 

Table 3: Detailed information of datasets 

Computational Resources All experiments are carried out on a cloud computing 

platform with: 

⚫ Operation system: Ubuntu 20.04 

⚫ CPU information: 18 vCPU AMD EPYC 9754 128-Core Processor 

⚫ GPU information: 1 GeForce RTX 4090D (24GB) 

Data splitting For datasets from ADMET benchmark group, each dataset comes with 

a predefined test set containing 20% of the data. As suggested in [13], we adopt 

scaffold splitting to split the remaining data into a training set and a validation set 

with split ratio 70/10, and this procedure is repeated for 5 different random seeds to 

create 5 training sets and 5 validation sets. 

Optimizer In all our experiments we used AdamW [14] optimizer, with the default 

settings of 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8, together with linear warm-up 

increase of the learning rate at the beginning of the training followed by its cosine 

decay. 



Model Selection For datasets from ADMET benchmark group, we choose the last 

model checkpoint for evaluation. 

Hyperparameters The hyperparameter settings are shown in Table 4 and Table 5. 

Table 4: Hyperparameters for datasets from ADMET benchmark group 
 

Hyperparameter Bioavailability CYP2C9 Substrate CYP2D6 Substrate CYP3A4 Substrate 

Hidden dim 128 64 128 128 
Layer 6 6 3 6 
Head 4 4 4 4 

Graph pooling Mean Mean Mean Mean 

Architecture Small Small Small Small 

Batch size 32 32 32 32 
Epoch 10 10 10 10 

Warmup 5 5 5 5 
Learning rate 1e-4 1e-4 1e-4 1e-4 
Weight decay 0 0 0 0 

Transformer dropout 0.0 0.0 0.0 0.0 
Feature dropout 0.0 0.0 0.0 0.0 

Propagation dropout 0.0 0.0 0.0 0.0 

 

Table 5: Hyperparameters for datasets from ADMET benchmark group 
 

Hyperparameter DILI hERG HIA Pgp 

Hidden dim 128 128 256 64 
Layer 3 3 6 6 
Head 4 4 4 4 

Graph pooling Mean Mean Mean Mean 

Architecture Small Small Small Small 

Batch size 32 32 32 32 
Epoch 10 10 10 10 

Warmup 5 5 5 5 
Learning rate 1e-4 1e-4 1e-4 1e-4 
Weight decay 0 0 0 0 

Transformer dropout 0.0 0.0 0.0 0.0 
Feature dropout 0.0 0.0 0.0 0.0 

Propagation dropout 0.0 0.0 0.0 0.0 

 


