The Art of Data Augmentation and Parameter
Expansion in Markov Chain Monte Carlo

JIANG Zhangziyan DB928356
GONG Jinqi DC027163

MATH4004: Graduation Project
2023/2024

BSc. in Mathematics (Statistics and Data Science)
Department of Mathematics

Faculty of Science and Technology
University of Macau



Name of Supervisor: LIU Zhi
Faculty /Department: Department of Mathematics, Faculty of Science and Technology

Name of Co-Supervisor (if any):

Faculty /Department:

Approved by



Abstract

Markov Chain Monte Carlo (MCMC) method plays a crucial role in Bayesian in-
ference but suffers inefficiencies in high-dimensional scenarios. In this report, we
summarize recent developments in integrating Data Augmentation (DA) and Pa-
rameter Expansion (PE) techniques to enhance MCMC efficiency. By leveraging
left-(invariant) Haar measures on locally compact groups, we provide a precise def-
inition of the Parameter Expansion Data Augmentation (PX-DA) algorithm. This
novel approach refines the traditional DA methods and exhibits improved conver-
gence properties, as supported by theoretical analysis and extensive simulations, and
contributes to advancing Bayesian methods, providing a more robust framework for
handling complex models.

Keywords: Markov Chain Monte Carlo, Data Augmentation, Parameter Ex-
pansion, Haar Measures, Bayesian Inference, MCMC Convergence.
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1 Introduction

In Bayesian statistical analysis, the posterior distribution of parameters often ex-
hibits a complex structure, posing challenges for direct sampling. To efficiently
extract samples from these intricate distributions, the Markov Chain Monte Carlo
(MCMC) method - particularly the Gibbs sampler - has become an essential tool
for researchers due to its adaptability to various complex multidimensional distri-
butions. By iterative sampling from conditional distribution, the Gibbs sampler
explores the parameter space globally, approximating the true posterior distribu-
tion. However, when faced with high-dimensional parameter spaces or complex
dependencies among parameters, the Gibbs sampler may suffer from inefficiency,
significantly limiting its practical performance.

Furthermore, handling missing data is critical when dealing with complex statis-
tical models. In real-world data analysis, data incompleteness is common, necessi-
tating the development of Bayesian methods capable of handling incomplete infor-
mation. Data augmentation (DA) techniques address this issue by transforming the
complex target distribution (which involves missing data) into a more manageable
form through simulation. The core idea of DA is to jointly consider the observed and
missing data, constructing a complete dataset, thereby simplifying the computation
and sampling process for the posterior distribution of parameters. This approach
not only tackles the missing data problem but also improves the sampling efficiency
of the MCMC sampler on complex distributions.

Despite the success of DA methods, dependencies between layers can still lead to
suboptimal sampling efficiency. To enhance sampling efficiency further, the Param-
eter Expansion (PE) method offers a fresh perspective. PE expands the parameter
space by introducing additional parameters. These parameters do not directly alter
the distribution of observed data but provide the model with more flexibility and
degrees of freedom. Through this approach, the PX-DA (Parameter Expansion Data
Augmentation) method enhances the algorithm’s exploration capability in the pa-
rameter space without altering the posterior distribution of observed data, thereby
improving the convergence speed and overall performance of MCMC algorithms.

This report delves into two strategies: DA and PX-DA. Leveraging the math-
ematical tool of left-(invariant) Haar measures on locally compact groups, we rig-
orously define and discuss the PX-DA algorithm. We demonstrate how PE can
enhance DA algorithms, especially when appropriate priors and expansion param-
eters are used. PX-DA exhibits superior convergence performance compared to
traditional DA methods under certain conditions. These findings not only validate
the effectiveness of the PX-DA algorithm but also provide new perspectives and
methods for the inference of complex models with Bayesian statistics.

Our report builds upon the foundational contributions of Tanner and Wong
(1987) and draws inspiration from subsequent studies by Liu and Wu (1999). Through
a combination of experimental validation and theoretical analysis, we provide novel
insights and practical guidance for data processing and algorithm design within
Bayesian statistical analysis. Our goal is to foster the wider adoption and advance-
ment of Bayesian methods across various domains.



2 Foundations of Data Augmentation

2.1 Bayesian Statistics and Missing Data

In Bayesian statistics, we aim to infer the posterior distribution of unknown param-
eters by analyzing observed data. However, when data is incomplete (i.e., there are
missing data, Y,,;s), the complete posterior distribution p(€ | Yops, Yinis) cannot be
directly computed (Kong et al., 1994). To address this issue, data augmentation
algorithms approximate the posterior distribution of complete data by simulating
the distribution of missing data.

The core of data augmentation lies in iteratively improving the estimate of the
predictive distribution p(Y,.s | 0, Yops) for missing data, indirectly obtaining an ap-
proximation to the posterior distribution of parameters p(6 | Y,s). This process can
be viewed as a Markov Chain Monte Carlo (MCMC) method, where each sampling
step depends on the previous result.

2.2 Implementation Strategies of Data Augmentation Algo-
rithms

The fundamental idea of the data augmentation algorithm is to use observed data
Y s and simulated missing data Ynis 0 construct an approximated complete dataset
and draw posterior distribution samples for the parameters. This process can be
achieved through the following steps.

2.3 Monte Carlo Approximation

First, we need to calculate the posterior distribution of the observed data p(6 | Yops)-
According to Bayes’ Theorem, this can be accomplished by integrating over all
possible missing data Y,,;,:

D6 Yips) o / (Yot Yinis | 6)p(8)AP (Yo,

In practice, this integral is often intractable to solve analytically, so we resort to
Monte Carlo methods for approximation (Metropolis and Ulam, 1949). Specifically,
we can approximate the posterior distribution through the following steps:

1. Draw m parameter samples {#)}™, from the prior distribution p(6).

2. For each parameter sample §() draw simulated missing data SA/W(Z?S from the
conditional distribution p(Y;.is | 0@, Yops).

3. Use the simulated complete dataset (Y, VAY

i) to update the approximation
of the parameter’s posterior distribution.



2.4 Multiple Imputation and Data Augmentation

Tanner and Wong (1987) suggested that initiating with an approximation g() to the

target distribution p(6 | yeps), allows for the generation of m independent instances
(1) (m)

iss - > Umis> derived from the predictive distribution:

of missing data y

]5 (ymis) = /p(ymzs | ‘97 yobs) g(@) de.

This process involves initially drawing 6 from g(6) followed by yﬁigs from
P(Ymis | 09, yops). The resulting yﬁflzs are termed “multiple imputations”. Utilizing
these imputations, we can construct an enhanced approximation of the posterior

distribution:

1 & :
newe = (9 obs) (])>
Gew(0) m;p | Yobs: Yrmis

If g(0) accurately represented the true posterior distribution, then p (y,:s) would
provide the precise predictive distribution for Y,,;s. However, g(6) typically serves as
an initial approximation in practical applications, necessitating iterative refinement.

The iterative mechanism of data augmentation and multiple imputation progres-
sively sharpens the accuracy of our posterior distribution estimate. Each iteration
is a deliberate attempt to more precisely emulate the missing data, utilizing these
simulations to refine the posterior parameter distribution. With increasing itera-
tions, the expectation is that convergence upon the target distribution will occur,
culminating in a dependable parameter estimation 6.

2.5 Connection with the Gibbs Sampler

Upon further examination of the Data Augmentation (DA) algorithm, it becomes
clear that the simulation of multiple copies of missing data in each iteration, denoted
by m, is not strictly necessary for the convergence of the algorithm. To elucidate
this concept, let us focus on the first iteration of the process.

The goal is to generate a new imputed data point, Y®. Initially, we randomly
select a mixture component, which is a step in the DA algorithm referred to as Step
1. This mixture component is associated with the previous iteration’s imputed data,
Y =1 Subsequently, we draw a parameter vector, #*, from this mixture component
and compute the conditional probability P(0* | Yobs, Yinis)-

In a metaphorical sense, we can view Y as the “offspring” of Y =Y. Due to the
stochastic nature of sampling, a proportion of the initial imputations—approximately
m/2.718 when m is large—will not produce any “offspring” in the subsequent iter-
ations. This means that these initial imputations do not contribute to the approxi-
mation of the posterior distribution in the future.

In essence, we can regard about 37% of the imputations in the zeroth generation
as being discarded in a random fashion, and thus, not utilized in the later stages of
the algorithm. After a sufficient number of iterations, the lineage of all imputations
will be traced back to a single common “ancestor,” indicating convergence. This
suggests that only one imputed data point from the initial generation contributes

7



to the final approximation of the posterior distribution. Since the selection of the
mixture component, and consequently, the parent 6*, is entirely random, the selected
“ancestor” is chosen without any bias—it is a matter of chance.

Mathematically, the DA algorithm can be seen as equivalent to an algorithm
that imputes only a single missing data point Y, i.e., K = 1), in each iteration.
This is essentially a Gibbs sampler with two components. Going forward, we will
refer to a two-component Gibbs sampler as the “Data Augmentation Scheme.”

This process is visually depicted in Figure 1, which provides a schematic repre-
sentation of the data augmentation scheme.

The abstract formulation of the data augmentation approach can be encapsulated
as follows. Suppose we aim at simulating from a distribution ¢(#). We construct an
“augmented” system (0, Y,,;s) such that the marginal distribution of § under this
system is equivalent to ¢(6), that is, [ (0, Yyis)dYomis = q(6). If this augmented sys-
tem facilitates iterative conditional sampling effectively, we can use a Gibbs sampler
to simulate from it and extract all necessary information about ¢(6).

o) 92 0’

VAVAVEE

1 2 3
Yo vy oy

Figure 1: Illustration of the data augmentation scheme.

2.6 Example of Data Augmentation: EM Algorithm
2.6.1 Introduction

One of the most widely used methods for data augmentation is the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977), which is an iterative algo-
rithm of finding maximum likelihood estimates of parameters in statistical models
when the data is incomplete.

The EM algorithm is based on the idea of augmenting the observed data with
unobserved data, and then iteratively applying the expectation (E-step) and max-
imization (M-step) steps until convergence. Consider a probabilistic model with
observed data Y,,, and missing data Y,,;s, and parameters #. The complete data
is Y = (Yops, Yinis)- The likelihood function for the observed data in terms of the
complete data likelihood is:

L(6: Yipe) = p(Ys | 6) = / (Yo, Yinis | 0¥

Direct optimization of L(6;Yy,s) is typically difficult due to the integration over
Y,.is. The EM algorithm facilitates this by iterating over the following two steps:

E-Step: Compute the expected value of the log-likelihood of the complete data,
conditioned on the observed data and the current estimate of the parameters 6®:

QO109) =Ey. . v.,. 00108 D(Yovs, Yimis | 0)].
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This expectation computes the average log-likelihood across the possible completions
of the data, weighted according to their current estimated probabilities.

M-Step: Maximize the expected log-likelihood obtained in the E-Step:

o) = arg max QO | 6W).

This step updates the parameter estimates to those that maximize the likelihood of
the complete data, as averaged over the estimated distribution of the missing data
from the E-Step.

Derivation of the EM-Algorithm

IOg P<yobs ‘ 0) = IOg/ P(yobsaymis ’ e)dymzs

Ymis

_ lOg/ P(yobsaymis | 0)9(3/ ) )dy )
Ymis g(ymls)

P(yobsaymis | 0)
= log Eg(ymis) |: g(y . )
|:P<yobsaymis ’ 0)
(y'mzs) g(ymzs)

> F

9 } , from Jensen’s inequality

P(yobs>ymis | 9)
g(ymis)

P(yob37ymis | 9)
9(Ynmis)

The equality holds when log

is a constant, i.e.,

=c#0.

1
— g(ymzs) = Ep(yobsaymis | 0)

Since fymis 9(Ymis)AYmis = 1, we have fyms P(Yobss Ymis | 0)dYmis = 1. Thus

¢ = P(yos | 0).
P(yobsa Ymis | 0)
— is) = =P S obs) 0).
g(ymzs) P(yobs | 0) (ymz | Yob )

Since ¢(ymis) is updating through iteration, it should be

g(ymzs) = P(y,ms | yobS,O(t)).

Then

P(yobsvymis | 9)
log P(yoes | 0) = E,, ¢ 3
08 P(Yons [ 6) = Eyilynnt® | By T gon o)

where 6 has nothing to do with %), Hence, our goal is to find

0@ [P (Yobs, Ymis | 0)] -

mis |yob57

6= argmax I
0



2.6.2 Application of the EM Algorithm to Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a probabilistic model assuming that the data
are generated from a mixture of several Gaussian distributions, each with its own
mean and covariance. This model is widely used for applications such as clustering,
density estimation, and pattern recognition.

Consider a dataset X = {xj,Xs,...,Xx} consisting of N independent observa-
tions drawn from a mixture of K Gaussian distributions. The density function of a
GMM is given by:

p(x|®) = Zﬁk/\/(xmm k),

k=1

where 7;,’s are the mixing coefficients with Zszl 7, = Land 7, > 0, and NV (x| gy, )
is the Gaussian distribution for component k£ with mean p; and covariance matrix
Ek.

E-step: In the E-step, the algorithm calculates the posterior probabilities (re-
sponsibilities) that each data point x; belongs to a component k, given the current
parameter estimates. These responsibilities are defined as:

i = N (i s i)
(2, K )
Zj:l TN (x| g, 25)
which are essential for the computation of the expected complete-data log-likelihood.
M-step: In the M-step, the algorithm updates the parameters based on the
responsibilities calculated in the E-step. The updated parameters are computed as
follows:

1

= — E VikXi,
Ny i=1
L

where N;, = Zfil Vik-

The EM algorithm alternates between these E and M steps until convergence,
typically when the increase in the log-likelihood is below a predetermined threshold.

This detailed exposition of the EM algorithm in the context of Gaussian Mix-
ture Models provides a clear example of how advanced mathematical models are fit
using iterative algorithms like EM, which are capable of handling latent variables
efficiently.

To empirically evaluate the effectiveness of the GMM-EM algorithm, we con-
ducted an experiment using the well-known Iris dataset in the scikit-learn, which
is a Python library by Pedregosa et al. (2011). This dataset consists of 150 instances,
each with four features: sepal length, sepal width, petal length, and petal width.
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The dataset is divided into three classes, each corresponding to a different species
of Iris flowers.

Our objective is to cluster the instances without prior knowledge of the species.
To achieve this, we implement the GMM-EM algorithm as described in Section 2.6.2.
We set the number of components to 3, aligning with the known number of species
in the dataset, and allowed the algorithm to converge to a solution.

The results of our experiment show that the GMM-EM algorithm achieved an
accuracy of 82%.

The visualization of the GMM components (Figure 2) illustrates how the algo-
rithm has successfully identified the natural groupings within the dataset. Each
ellipse in the plot represents the region of high probability for a particular Gaussian
component, with the data points clustered around these regions. This visual repre-

sentation provides a clear and intuitive understanding of the clusters formed by the
GMM-EM algorithm.

Original Iris Data GMM Fitted
4.5 B
° ® setosa ® ® setosa
versicolor versicolor
. virginica * virginica
L] °
4.0 ° b °
L] L]
L] L] L ] L
® oo ° oo
e oo e oo
3.59 (11} L] q (11} L]
£ ® & so0 o £ ® © s o
2 oo 2 oo
= ® o0 o = e o0 o
2 e oo 2 e oo
3304 ee  eee 31 ee  eee
L] [}
2.5
° °
2.0

Figure 2: Comparison of the original Iris data (left) and the GMM components
(right). The ellipses in the right plot represent the Gaussian components, and the

colors correspond to the different species of Iris flowers, demonstrating the algo-
rithm’s ability to accurately capture the underlying structure of the dataset.

Overall, the experiment demonstrates the practical applicability of the GMM-EM
algorithm for clustering. The combination of quantitative accuracy and qualitative
visual analysis provides a comprehensive evaluation of the model’s performance and
offers insights into the data’s structure.

2.6.3 Convergence Properties

The convergence properties of the EM algorithm are grounded in the concept of the
likelihood function and the information matrix. Let @ denote the parameter vector
of interest, and let L(@) represent the likelihood function based on the observed data
Y ops- The observed information matrix is defined as () = —F [%?TQ% log L(0)]Y ops)-
Ascent Property of the EM Algorithm The ascent property is a fundamental
characteristic of the EM algorithm. This property guarantees that the observed log-
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likelihood log p(Yops | @) monotonically increases with each iteration, thus ensuring
convergence to a local maximum of the likelihood function.

Proposition 1. logp(Yos | 6%) < logp(Yops | 01).

Proof. To prove this property, consider the EM algorithm, which iteratively applies
the E-step and the M-step to update the parameter estimates. We start by express-
ing the log-likelihood of the observed data Y, as an integral involving the complete
data log-likelihood:

p(Ymisa Y;)bs | 9)
p(Ymis | Y;Jbsa 9)
= log p(Yomis; Yobs | 0) — 108 p(Yinis | Yobs, 0).

log p(Yops | 0) = log

Take expectations on both sides with respect to Y, | Yops, 0°, we have

p(}/ob& Ymis | Q)
p(Ymis ‘ Y;)bs; 6)

- /p(szs ‘ Y:)bsaet) logp(Y;)bqumis | 0>dezs

lng<Y;bS ’ 9) = /p(szs ‘ Y:)bm et) lOg dezs

- /p(szs ‘ Y;bsv 0t> logp(ymis | Y;bS7 Q)dezs
=Q(0,6") — H(6,6"),

where (6, 0") is the expectation of the complete data log-likelihood with respect to
the distribution of Y,,;s given Y, and 6, and H(6,6") is the corresponding entropy
term.

E-step: In the E-step, the algorithm calculates:
Q(Qtaet) = /p(szs | }/obwgt) lng(%bsuymis | Qt)dymis'

M-step: In the M-step, the algorithm finds 6! such that:

9" = arg max Q0,0").
By definition, this maximization ensures:
Q0. 6") > Q(¢", 6").
To complete the proof, consider the entropy change from €' to 9*!:

p(szs ‘ Y'obsa 9t+1)
p(szs | Y;)bsa gt)
=—-KL (p<szs | 1/’obs; 9t+1) H p(szs ‘ }/obs>9t>) < 07

H(O™ 0% — H(6',60') — / P(Vinss | Vi, 0') log Ve

12



where K L denotes the Kullback-Leibler divergence, which is non-negative and equals
zero if and only if p(Yonis | Yobs, 077) = p(Vinis | Yobs, 07).
Thus, combining the increase in ) and the non-positive change in H, we have:

log p(Yons | 6) = Q(8',6) — H(6',6%) < Q6" 6) — H(6",6") = log p(Vaps | 6,

demonstrating the ascent property of the EM algorithm where log p(Y,s | 6771) >
log p(Yops | 6°) and thereby ensuring that each iteration step improves or maintains
the likelihood of the observed data under the model.

0

Convergence to a Stationary Point  Normally, such as the existence of second-
order derivatives and the boundedness of the parameter space, the EM algorithm
converges to a stationary point of the likelihood function. This is formalized in the
following statement.

Proposition 2. If 6, is an initial estimate such that Q(8y) is finite, and the model
satisfies the regularity conditions of Louis, then the sequence {8} generated by
the EM algorithm converges to a limit 8* that is a stationary point of Q(8), i.e.,
Q(0*) > Q(O') for all @ in the parameter space.

Proof. Let ) denote the parameter estimate at iteration t, and 8* be the limit of
the sequence. We aim to show that Q(6*) > Q(8’) for all 8 in the parameter space.

Given that Q(O(t)):i o is monotonically increasing and converges to Q(68*), we
have:

lim Q(0Y) = Q(6").

t—o00

Furthermore, since Q(0) is concave with respect to €, the limit 8* must satisfy
the first-order condition for optimality:

vQ(6") = 0.

This implies that 6* is a stationary point of Q(8).
Therefore, for any parameter value @’ in the parameter space, we have:

Q(6") > Q(8'), since Q(6") = lim Q(")).

Thus, the convergence to a stationary point is established. ([l

Rate of Convergence The convergence rate of the EM algorithm is influenced
by several factors, including the initial estimate, the structure of the model, and the
nature of the missing data. The rate can be characterized by the rate of convergence
of the information matrix towards its inverse as the sample size increases.

Under certain regularity conditions, if the true parameter value 6° lies in the
interior of the parameter space, and the observed information matrix (0°) is positive
definite, then the EM algorithm converges at a superlinear rate.

This result implies that the EM algorithm is not only consistent but also asymp-
totically efficient, achieving a faster convergence rate as the sample size grows.

13



Effect of Data Augmentation Data augmentation can significantly affect the
convergence rate of the EM algorithm. By introducing auxiliary variables that are
functionally related to the missing data, the effective sample size is increased, which
can lead to faster convergence and more accurate estimates. The choice of data
augmentation scheme is thus crucial for the efficiency of the EM algorithm.

3 Bayesian Curve Fitting via Data Augmentation

3.1 Introduction to Bayesian Curve Fitting

In Bayesian curve fitting, the objective is to estimate the parameters of a model
that best describes the relationship between a set of predictors and an observed
response variable (Fan et al.; 2010). This is often achieved by positing a smooth
function, such as a spline, which can be flexibly adjusted to accommodate the data’s
underlying structure. The Bayesian approach is particularly advantageous as it
allows for the incorporation of prior knowledge and the quantification of uncertainty
in the estimates.

3.2 The Use of Auxiliary Variables

Auxiliary variables are introduced to circumvent the challenge of dealing with an
unknown number of knots in a spline model. To fit the curve f, we have a general and
powerful non-parametric approach, which is via spline functions of a given degree,
P > 1. Then, f can be written as the linear combination of basis functions:

P K
fl@) =0+ Y aa? +> mle =), € lal)
j=1 k=1

where (x — )+ = max{0,z — 9} and v, for k = 1,..., K, represent the locations
of the knot points, where (x — ;)4 is the positive part of the difference z — ;. To
facilitate the Bayesian treatment, we introduce binary auxiliary variables z, such
that z; = 1 if a knot is present at 7, and z;, = 0 otherwise. This representation
allows the model to adaptively select the number of knots and their locations based
on the data.

3.3 Prior Settings

The prior distribution for the model parameters plays a crucial role in the Bayesian
analysis. In the context of spline regression with auxiliary variables, the following
priors are commonly used:

e Spline Coefficients 7;: A natural choice is to assume a normal prior for the
spline coefficients, n, ~ N(0,72%), where 72 is a hyperparameter that controls
the variance of the coefficients. This prior encourages smoothness in the spline
function.

14



e Knot Locations ~;: The knot locations can be assigned a uniform prior on a
predefined interval, say [0, 1], reflecting our lack of prior knowledge about the
specific locations of the knots.

e Auxiliary Variables z;: The prior for the auxiliary variables can be a
Bernoulli distribution with parameter p, representing the probability that a
knot is present at a given location. This choice allows for a flexible number of
knots to be included in the model.

e Variance of the Observations o?: A common choice for the observation
noise is an inverse-gamma prior, 0% ~ 1G(a,b), where a and b are hyperpa-
rameters that can be set based on prior knowledge about the variability in the
data.

The use of these priors allows the Bayesian curve fitting model to incorporate
both the data-driven information and the analyst’s prior beliefs about the smooth-
ness and structure of the underlying function.

3.4 Data Augmentation in Bayesian Curve Fitting

As we mentioned data augmentation is a technique used to improve the efficiency
of MCMC algorithms by augmenting the observed data with additional, unobserved
variables. In the context of Bayesian curve fitting we can augment the parameter
space by adding auxiliary variables, in this way, data augmentation can be used to
enhance the sampling of the knot locations and the spline coefficients.

The augmented data model includes the observed data Y, the latent knot lo-
cations v, and the latent auxiliary variables Z. The joint distribution of these
quantities can be expressed as:

p(Y, v, Z | n,0%) =pY | v,n,0))p(v | Z)p(Z)p(n | 7*)p(0?),

where p(Y | v,7n,0?%) is the likelihood of the observed data given the spline model,
p(v | Z) is the prior for the knot locations, and p(Z), p(n | %), and p(c?) are the
priors for the auxiliary variables, spline coefficients, and observation noise variance,
respectively.

During the MCMC sampling process, data augmentation allows for the genera-
tion of the latent variables from their conditional distributions, which can be more
easily sampled than the original parameters. This leads to more efficient exploration
of the parameter space and improved estimates of the posterior distribution.

The combination of auxiliary variables and data augmentation techniques pro-
vides a powerful framework for Bayesian curve fitting. By allowing for a flexible and
data-driven selection of knots and efficient MCMC sampling, this approach can lead
to more accurate and robust estimates of the underlying curve.

3.5 Simulation Studies

We consider the cubic spline model by setting P = 3 in the spline function

Y =n () + e,
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where ¢; ~ N (0, 0?) is the white noise, and

K, max

3
n(x) =Y agwd + Y G (s — )}
=0 k=1

where (;, = 0 or 1 which is the auxiliary variable. Define

Kmax

<= G
k=1

The priors on the parameters in the model:

o? ~T710.1,0.1),
a; ~N(0,10),0 < j <3,
e ~N(0,10),0 <k < K,
Y~ U, 0<j < K.

Besides, we let

- | (Komax — [C])!
picl )= e ) = KR 2D
Y
pCICl [A) o o]y Hel< K}

Kmax!
A (Ko — M)

A ~ Bin (Kyax, p = 0.5), p(A\) x

Sampling scheme
Initialize:
The initial sample is produced according to the following formula

o*! «+T710.1,0.1),
aj < N(0,10),0 < j <3,
Y <+ N(0,10),0 < k < K,

e U1),0<j <K,
A< Bin (Kpayx, p = 0.5),
¢t = p (IcI1AY),

Then, Randomly select |¢|! elements from (], k... and assign a value of 1 to these
elements, while assigning a value of 0 to the remaining elements. The superscript
of the variable is used to denote the index of the sample. Subsequently, we denote
[ as the index of the sample. (set [ = 1 during this step)

Step 1: First, we let [ < [ + 1. Besides, denote
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]
-1 -1
Hl-1 — Lz a3 CL’% (xQ ~ Tk )+ (1’2 ™ Vig )+ Y — Y
_1\3 _1\3
1 Tn l‘i x?z (x'fl - ,ylill)+ (x" - ’ylchl)+ Yn
where K = ‘Clil , and Cfgl = 1,(’}51 =1,---, ,i;l = 1. The following equation is

used to generate [Ozll, ab, ag, Pl ,WK}

IR AN R A l —1gl-1T 2,0-1 p—1
[060,051,&2,0637¢k1,--- 71%“1(} NN(A P Y,O” A ),

where
AL TR 40,1021

Furthermore, for any s € {s | ¢t = O} L+ N(0,10).
Step 2: Using the MH to generate .. First, for any s € {s | ¢t = 0}, assign
7L U (I,). Furthermore, for any r € {r | ¢!™' =1}, set 77 < U (I,), and define

3 Kmdx

=2 eel + 2 G (il — Y
]:
Krnax

3
et =Y alal + 3 G (wi -4 - Y
j=0 k=1

| () (@)
@ = min {1’ eXp [Z 92—1 Z 9521 | [

i=1 =1

Subsequently, generate u ~ U(0,1). If u < a, then assign 7. = ~* for r €
{r| ¢t =1}. Otherwise, set 7. =~/~!
Step 3: We define

Za )+ Z Yl (xl —’yﬁ)i
T‘E{'I‘lC }

Generate 02! based on the formula below:

02’l<—F_1<01+ 0.1+ = Z )

Step 4: Using the MH to generate ¢!. To begin with, let ¢} « C,i,_l, and calculate

Kmax

3
; _ 3
=Y alal + Y e (i —al) - Vi
§=0 k=1
Further, For k =1,2, -+, K ax :
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1. assign(; =1 — ]i_l,M =1 2(};17
2. calculate &; = e; + M. (xz - %{)i i=1,2---.nm,
M
2 n ~\2 2,1 . AL
(€)= > (&) } /20 }, and J, = (|Cl|—+Ck) ,

4. calculate ¢ = min (1, J;J5), and generate u < U(0,1),
5. If u < a, then assign ¢! + ¢ and e; + &, otherwise ¢} <+ ¢, '

Cl
Step 5: Generate \* ~ Bin (Kpyax, p = 0.5) ,u ~U(0,1). If u < min {1, ( A >’ l] A

n

3. calculate J; = exp { [Zz’:l

N-1

M\*, other wise AX'"!. Go to the step 1.

3.5.1 Comparison of the performance of with and without using DA

Now, we plot the ACF plots to show the effect of implementing data augmentation.

ACF for gammal 1] with DA ACF for gamma[ 1 ] without DA

[ w

L

ACF
1.0 05 00 05 10

A
1.0 05 00 05 10

ACF for gammal 2 ] with DA ACF for gamma[ 2 ] without DA

L.

HHHH””||HH|IHUUML

ACF
1.0 05 00 05 10

ACF
1.0 05 00 05 10

Figure 3: ACF plot: with and without using DA

From Figure 3, we conclude that the value of ACF decreases much faster as the
lag increases, which indicates that DA is effective.

Parameter

With DA Without DA

Qg
aq
Qo
a3
Yo
U1

672

Yo
4!

86151.681 663.32267
92356.746 355.65203
48477.154 352.47682
29862.479 95.66642
100000.000 94.38433
100000.000  15139.96309
91872.256  89309.96309
4979.635 97.25944
17673.547  2485.57896

Table 1: Values of Prarameters

Table 1 shows iterated values of the parameters.
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4 Podlya-Gamma Augmentation in Bayesian Infer-
ence

As we mentioned data augmentation is a powerful tool in Bayesian statistics that
enhances computational efficiency by introducing latent variables to reparameter-
ize the model. In the realm of logistic regression, the Pélya-Gamma augmentation
stands out as an innovative solution to the computational bottleneck posed by the
logistic likelihood. By recasting the logistic model through the lens of the Pdlya-
Gamma distribution, Polson et al. (2013) enabled a more straightforward Gibbs
sampling approach, thus facilitating Bayesian inference in logistic models. This
section presents the integration of the Pdlya-Gamma latent variables into logistic
regression, illustrating how data augmentation streamlines the Bayesian analysis
workflow. The discussion will highlight the methodological insights and computa-
tional strategies that arise from this augmentation, showcasing its utility in handling
the logistic model’s complexity.

4.1 Podlya-Gamma Distribution
Definition A Pdlya-Gamma random variable, denoted as w, is important for data
augmentation in Bayesian models with binomial likelihood. It is defined as

o0

1 Gk
w~ PG(b,c) = w %2;%_1/2)2%2/%2,

where g ~ Gamma(b, 1) are independent Gamma random variables, b > 0 is a
parameter often representing the number of trials in the binomial model, and ¢ is a
real number related to the logistic regression parameters.

Properties

e Infinite Divisibility: The Pélya-Gamma distribution is infinitely divisible,
essential for modeling in a Bayesian framework.

e Conjugacy: This distribution results in posterior distributions that are easier
to sample from due to its conjugate properties in logistic regression when
parameterized by log-odds.

4.2 Theoretical Justification
Theorem 1. For b > 0 and any real ¢, the following integral identity holds:

(€w>a —b ki - —wip?/2
(1+—€’¢')b =27 ; (& p(bd) dw,

where k = a — b/2 and w ~ PG(b,0). Furthermore, the conditional distribution

e p(w)
p(w ’ W - fooo e*“¢2/2p(w)dw’
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which implies (w | ¢) is also in the Pélya-Gamma class, i.e., (w | ) ~ PG(b, ¢).
Here we give the proof of the integral identity, and the derivation of the condi-
tional distribution is provided in the work of Polson et al. (2013).

Proof. We aim to establish a relationship between the Pdlya-Gamma distribution
and our logistic likelihood expression. Let ¥ be a real number and consider the
following steps.

First, we recognize that the hyperbolic cosine can be expressed as

¥ ) ¥
h(¢) bt (FHeF)oed
COSs — | = = =

2 2 B 2% o 2e¥ ]

— 14+e¥ = 26% cosh (%) .

Substituting this into our original expression, we get

b
(ew)a _ (ew)a — bkt 1
(1+ev)? (2€%)b(COSh(%))b cosh(¥) )’
where k = a — g
Next, we apply the definition of the Pdlya-Gamma distribution where w ~
PG(b,0) and take the expectation with respect to w, denoted as E,,, to obtain

b ke B O A N B
277e"E, e 2 | =2 e 2 p(w)dw.
0

where p(w) is the probability density function of the Pdlya-Gamma distribution
PG(b,0).

Thus, we have reformulated the logistic likelihood expression into a combination
of a normal distribution and a Pélya-Gamma distribution, which is a significant step
in the Bayesian analysis of logistic regression models. 0

And the conditional (posterior) distribution p(w | %) as being in the Pdlya-
Gamma class enables us to construct efficient Markov Chain Monte Carlo (MCMC)
algorithms for Bayesian inference in logistic regression models.

Now, to derive our Gibbs sampler, we first write the likelihood contribution of
observation i as

{exp(af )}
1 + exp(z!B)

o exp(kiz! B) /000 exp{—w;(z! 8)?*/2} p(w; | ni,0),

Li(B)

where k; = y; — n;/2, and p(w; | n;,0) is the density of a Pélya-Gamma random
variable with parameters (n;,0).
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Combining the terms from all n data points gives the following expression for
the conditional posterior of 3, given w = (wy,...,wy):

N N

p(B | w,y) o< pB) [[ Li(B lwi) = p(B) ][ exp {kixl B —wila]B)?/2}

i=1 =1

—=

 p(8) [Texp { !B~ kifw)?}

i=1
1
< p8)esp {5~ XD - X8}
where z = (ky/wi, ..., ky/wy), and where D = diag(wy, ... ,wn).
Let z; = (41, %2, ..., T;p) be the vector of regressors, y; be the number of suc-
cesses, and n; be the number of trials, where i = 1,..., N. Let 8 ~ N(b, B), and
y; ~ Bin(n;, 1/(1 + e=%1)), where 1; = ] 3 are the log odds of success.

Then we can use Pélya-Gamma method to sample from the posterior distribution
by simply iterating two steps:

(wi | 5) ~ PG(TLZ,{EIB),
Bly,w) ~N( X' DX +b )Y Y Xk +B7'),(X"DX +b 1)),

where k = (y; —n1/2,...,ynv —ny/2) and D is the diagonal matrix of w;’s.

4.3 Implementation in Bayesian Logistic Regression

In the Bayesian logistic regression context, outcomes y are modeled as

yi | pi ~ Bernoulli(p;), logit(p;) = =7 5.
Using Pélya-Gamma augmentation, the conditional distributions are simplified:
e Augmentation Step: w; | 8, 7; ~ PG(1,z13).
e Sampling Step for (: Given w and the data, the posterior distribution of

can be sampled using Gaussian distributions, simplifying the MCMC process.

4.4 Simulation Studies
4.4.1 The PG(1, z) sampler

Background and Relation to Jacobi Distribution The PG(1, z) distribution
can be related to a tilted version of the Jacobi distribution, denoted J*(1, z), through
the transformation

PG, 2) = iJ*(l,z/2).

The Jacobi distribution J*(1,0) relates to the Jacobi theta function, and its expo-
nentially tilted version is J*(1, z).
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Density Representation The density f(z | z) of J*(1, 2) is defined by an expo-
nential tilt of the base Jacobi density:

3322

f(x | 2) = cosh(z)e™ = f(x),

where f(z) is the density of J*(1).
When f(z) = > (—1)"a,(z), where the coeflicients ai(z) < as(z) < --- <

n

an(z) for all n € Ny, then the partial sum S,z = > (—1)'a;(x), satisfy

So(x) > Sa(x) > -+ > f(x) > -+ > S3(x) > S1(x).

Series Representation and Sampling Strategy The density of J*(1,z2) can
be represented as an infinite alternating sum, suitable for sampling using an accept-
reject algorithm with series expansion methods.

Accept-Reject Sampling Procedure

e Proposal Distribution: Construct a proposal density g(z|z) that approx-
imates the target density well. For the Jacobi distribution, the proposal is
a mixture of an inverse-Gaussian for small values of x and an exponential
distribution for larger x, each conditioned on z.

e Sampling Steps:

1. Draw X ~ g(z | 2).

2. Draw U ~ U(c(z)g(X | z)), where ¢(z) is a normalizing constant ensuring
the envelope property.

3. Compute the series sum S, (X | z) iteratively for the alternating sum
representation.

4. Accept X if U < S,(X | 2) for an odd n, and reject X and repeat from
step 1 if U > S,,(x) for some even n.

Conversion to PG(1, z) Once X is sampled from J*(1,z/2), convert it to a
sample from PG(1, z) by scaling:

Y = X/4.

4.4.2 Comparison of the performance between two samplers

Now, we compare our sampling scheme with the Metropolis-Hasting sampler. Based
on the ACF plots presented in Figure 4, the comparison between the Metropolis-
Hasting (MH) sampler and the Pélya-Gamma (PG) augmented sampling method
indicates a distinct performance advantage in favor of the PG approach. For each
of the four components, the ACF values for the PG method decrease more rapidly
as the lag increases. This is indicative of better mixing and faster convergence to
the stationary distribution for the PG sampler.
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A more rapid decline in ACF values suggests that the samples generated by the
PG method are less autocorrelated. This implies that successive samples are more
independent of each other, which is a desirable property in Markov Chain Monte
Carlo (MCMC) sampling. It leads to more efficient sampling because it reduces the
number of samples needed to estimate quantities of interest with a given level of
accuracy.

The effectiveness of the PG method is particularly notable at higher lags, where
the ACF values approach zero much quicker than those from the MH sampler.
This enhanced performance could be attributed to the PG method’s augmentation
strategy, which may be better suited to the underlying structure of the data or
model being sampled.

In summary, the ACF plots strongly suggest that the PG method outperforms
the traditional MH sampler in terms of efficiency and convergence speed, making it
a compelling choice for practitioners seeking robust and effective MCMC sampling
strategies.

MH Component 1 PG Component 1 MH Component 2 PG Component 2

i
00 02 04 06 08 10
i
00 02 04 06 08 10

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

00 02 04 06 08 10
L
00 02 04 06 08 10
L

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

Figure 4: ACF plot: MH vs PG

5 Parameter Expansion for Data Augmentation

In the realm of Bayesian Statistics, the accurate representation of posterior distri-
butions is paramount. However, this task is often complicated by the presence of
missing data, which necessitates the use of robust methods to handle such incom-
plete information. Data Augmentation (DA) algorithms are a staple in this regard,
yet they may sometimes suffer from slow convergence, particularly when dealing
with highly structured or correlated data (Liu and Liu, 2001). This section explores
the concept of Parameter Expansion (PE) as a means to enhance the efficiency of
DA algorithms.
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5.1 Autocorrelation in Data Augmentation

The DA algorithm, as originally proposed, iterates by imputing missing data and
updating the parameter of interest. However, this straightforward approach can lead
to a high degree of autocorrelation in the Markov Chain, which in turn hampers the
algorithm’s mixing properties. Specifically, the DA algorithm’s two-step process
involves first drawing missing data Y,,;s from its conditional distribution given the
observed data Y, and the current estimate of the parameter 6, and then updating
0 using the newly imputed data (Van Dyk and Meng, 2001). This method, while
intuitive, may not fully exploit the structure of the data to guide the search through
the parameter space.

5.2 Parameter Expansion

To address the issue of slow convergence, the concept of Parameter Expansion (PE)
is introduced (Liu and Wu, 1999). PE involves augmenting the parameter space by
introducing additional parameters that capture certain characteristics of the missing
data distribution. These auxiliary parameters, denoted by a, are chosen to be part of
a transformation group that acts on the missing data Y;,;,, allowing for more global
adjustments and potentially improving the exploration of the posterior distribution.

The introduction of a as an expansion parameter enables the DA algorithm to
transition from a local representation of the missing data to a more comprehensive
one that accounts for the underlying structure of the data. By doing so, PE aims
at reducing the autocorrelation observed in the standard DA algorithm and thereby
accelerates the convergence to the target distribution.

5.3 Theoretical fundations for Parameter Expansion (PE)

The Markov Chain Monte Carlo (MCMC) method is a powerful tool for sampling
complex probability distributions, particularly those that are difficult to access
through traditional methods. At the heart of MCMC lies the metaphor of a “ghost
point” moving through its sample space, with the sampler’s output representing the
trajectory of this point’s movement.

5.3.1 The Ghost Point and MCMC Moves

Consider the operation of a Metropolis-Hastings algorithm, where at each step, a
new position for the ghost point is proposed based on its current location. This
tentative position is evaluated using an acceptance-rejection rule, which determines
whether to move the ghost point to the proposed position or to keep it at its current
location. This process is analogous to a random-scan Gibbs sampler, which selects
a direction in the parameter space at random and moves the ghost point along this
direction to a location drawn from a conditional distribution appropriate for the
chosen direction.
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5.3.2 Invariance and the Design of MCMC Schemes

The key principle in designing effective MCMC schemes is the preservation of the
target distribution 7(x) under the proposed moves. This means that the probability
of the ghost point being at any point in the sample space should remain unchanged
after a move. The partial resampling principle discussed below is a broad strategy
for ensuring this invariance, but it often lacks the specificity and practicality required
for efficient sampling.

Partial Resampling Principle in MCMC Methods

Partial Resampling is a strategy used in Markov Chain Monte Carlo (MCMC)
methods to enhance the sampling process from complex multivariate distributions.
It is particularly useful when dealing with high-dimensional or intractable probabil-
ity distributions. The key idea is to leverage the structure of the target distribution
to design more efficient sampling algorithms.

Gibbs Sampling and Partial Resampling Gibbs sampling is a special case
of Partial Resampling where the random vector x of interest is decomposed into
components, and samples are drawn sequentially from their conditional distribu-
tions. Specifically, the vector x is split into two parts: x = (x1,x_1), where x; is
a single component and x_; represents the remaining components. The conditional
distribution 7(z1|x_1) is then used to update z; with a new sample z*. The invari-
ance of the conditional distribution under the transition rule A(z; — z*) ensures
that the target distribution 7(x) remains unchanged after the update.

/W(xl,x_l)A(xl — ] | x_1)dr

=m(x_1) /W(ZB] | x_1)A(x; — ] | x_1) day
= 7(x_1)m(a] | x-1)
(z1,%1)
(

x").

Il
3

*
Ty
*

|
3

This property allows the Gibbs sampler to make proper moves and explore the
sample space effectively.

Fiber Decomposition and Conditional Sampling A more general ap-
proach to Partial Resampling involves partitioning the sample space X into disjoint
subsets, known as fibers, such that X = (J .4 Xa and X, N &, = 0 for a # b. Each
fiber X, is associated with a conditional distribution m,(x), which is the distribution
of x given that it lies in &X,. The overall distribution 7(x) can then be decomposed
as an integral over the fibers:

w0 - [  ml)un(da)
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where v,(da) is a measure over the parameter space A. The invariance of 7(x) under
transitions on the fiber is crucial for the Partial Resampling strategy. A transition
rule A(x — x’) that leaves m,(x) invariant will also leave m(x) invariant:

/’ﬂ'a(X)A(X - x| X,)dx = /Wa(x')A(x — x| X,)dx’.

This property enables the construction of MCMC algorithms that can efficiently
sample from complex distributions by focusing on lower-dimensional fibers and using
conditional moves that preserve the local structure of the target distribution.

Challenges in Fiber Decomposition and Conditional Measures In the
context of Partial Resampling, two primary challenges arise. Firstly, the process of
constructing a fiber decomposition for a given sample space lacks straightforward
guidelines. The fiber decomposition is essential as it segments the sample space into
subsets, each associated with a conditional distribution. However, without clear
directives, this task can become intricate and arduous.

Secondly, even when a fiber decomposition is successfully defined, deriving the
corresponding conditional measure v,(z) presents its own set of difficulties. The
conditional measure is pivotal for the Partial Resampling process, as it governs
the transition probabilities within the MCMC scheme. Despite the importance of
va(x), its determination can be a non-trivial problem, often requiring sophisticated
mathematical techniques and a deep understanding of the underlying distribution.

5.3.3 Transformation Groups and Constructive Solutions

To address the limitations of partial resampling, we turn to the concept of transfor-
mation groups. These groups provide a structured way to describe the moves of the
ghost point in the sample space. Specifically, we consider transformations that can
be applied to the current position of the ghost point to obtain a new position, with
the goal of maintaining the invariance of the target distribution.

Suppose at time ¢, the ghost point is located at x* = x. At the subsequent time
step t+1, the ghost point is “moved” to a new location x“*t1) = x’ through the appli-
cation of a transformation ~ from a set of transformations I'. This move is designed
to leave the target distribution m(x) invariant, ensuring that the MCMC sampler
explores the sample space in a manner consistent with the underlying probability
distribution.

The use of transformation groups allows for a more explicit and constructive
approach to MCMC sampling. By carefully selecting the group I' and the associated
distribution for v, we can design MCMC schemes that are not only theoretically
sound but also computationally efficient. This approach forms the basis for the
Parameter Expansion technique, which has been shown to improve the mixing and
convergence properties of MCMC algorithms.

5.3.4 Transformation Groups and MCMC Moves

Suppose we can represent the transition from a current state x to a new state x’
in an MCMC sampler through the application of a transformation -, chosen from a
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set of transformations I'. This transformation acts as a “mover” that facilitates the
transition:

x = v(x).
For instance, in a random-scan Gibbs sampler, the current position x = (z;,%_y),
where z; is a single coordinate and x|_; represents all other coordinates, is updated
by moving only the i-th coordinate:

x' = (z7,X[_q).
This can be interpreted as a translation transformation applied to x:
(IBi,X[fi]) — (élfz +%XH}) , v ER.

Here, the set of all eligible v values forms a group under the usual addition operation,
and we denote this group as I.

5.3.5 Invariance and the Choice of Transformation Distribution

The crucial aspect of choosing v from I' is to ensure that the target distribution
7w remains invariant under such transformations. In other words, the distribution
of X’ = y(x) should be identical to the original distribution 7. This leads to the
general problem formulation: given a random variable x distributed according to =
and a set of transformations I', what distribution should we use to draw ~+ from I’
so that the transformed variable x” follows the same distribution 77

Later we will provide a clear answer to this question when the set of transforma-
tions I' forms a locally compact group. It offers a method to select + such that the
distribution of the transformed variable is consistent with the target distribution,
thereby ensuring the invariance property required for effective MCMC sampling.

5.3.6 Definition of a Locally Compact Group

Suppose 7(x) is a probability distribution of interest defined on the sample space
X. A set T' = {~} of transformations on X is called a locally compact group (or
a topological group) if:

e ['is a locally compact space.
e The elements in I" form a group with respect to the usual operation for com-
posing two transformations, i.e., y172(x) = 71 (72(x)).

1

e The group operations (v;,72) — 7172 and v — 4~ are continuous functions.

5.3.7 Haar Measures

For any measurable subset B C I' and element 7, € I', the action of 7y on B defines
another subset of I'. A measure L is called a left-(invariant) Haar measure if
for every vy and measurable set B € I', the following holds:

1B = [ L = [ pan = L),

Similarly, a right-Haar measure can be defined. Under mild conditions, these
measures exist and are unique up to a positive multiplicative constant.
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5.3.8 Transformation Groups and Gibbs Sampling

Generally, any move from x to x’ in the sample space X can be achieved by a
transformation « chosen from a suitable group I'. For instance, if x = (z1,...,z4)
and x' = (2, x,...,x4), the move can be accomplished by a translation group I
acting on x as follows:

F={yeR:vx)=(r1+7,22,...,24)}.

An appropriate sampling distribution for v leads to the Gibbs sampling update of x;
to 2. To construct a complete Gibbs sampling chain, one must use a combination
of translation groups, one for each coordinate of x. If this combination is transitive,
the resulting Markov chain is irreducible.

5.3.9 Invariant Sampling Distribution

Given a group I, it is crucial to determine an appropriate sampling distribution
for v to ensure that m remains invariant under the transformation x’ = y(x). The
theorem below provides a specific form for the sampling distribution.

5.3.10 Generalized Gibbs Sampling

Theorem 2: Generalized Gibbs Sampling Let ' be a locally compact group
of transformations acting on the sample space X', and let L denote its left-invariant
Haar measure. Let m be an arbitrary probability measure defined on X. Assume
x ~ 7(x), and let v be sampled from I" with the probability distribution

px(7) o< m(y - x) [Jy(x)] L(dy),

where J, (x) = det ((’)g_)-(x) is the Jacobian determinant of the transformation . Then,
the transformed sample x’ = 7 - x is distributed according to m. The theorem is
proved by Liu and Sabatti (2000).

The standard Gibbs sampler can be obtained as a special case by selecting I' to be
the group corresponding to translations along each coordinate axis. An immediate
extension of this standard sampler involves choosing I" to be the group of translations

in an arbitrary direction, characterized by
Fr={yeR:vyx)=x+ve=(r1+7e1,...,24+veq)},

where e = (eq,...,e4) is a predetermined unit vector. The appropriate distribution
for sampling 7 is then derived from Theorem 2 as py(7y) o w(x + ve).

For any locally compact transformation group I', a generalized Gibbs step can
be delineated as follows:

1. Draw v € I' from the distribution px(y) o< 7(y - x) |.J,(x)| L(dv);

2. Update the state to x’ = v - x.

The key insight provided by Theorem 2 is that the action of I' on x allows us to
transition from one point to another along the orbit in a manner that is consistent
with the target probability distribution 7. This transition is achieved by sampling
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a transformation v € I' according to the derived distribution, which inherently
accounts for the changes in the probability measure induced by the transformation.

In essence, Theorem 2 provides a mathematical framework that allows for the
simulation of a Gibbs sampling scheme where the reparameterization is implicitly
defined by the group action. This approach circumvents the need for an explicit
reparameterization, offering a flexible and generalizable method for constructing
Markov Chain Monte Carlo (MCMC) algorithms that can efficiently explore the
sample space according to the desired distribution .

5.3.11 Scale-Transformation Group in Gibbs Sampling

Within the framework of Gibbs sampling, the selection of an appropriate transfor-
mation group is crucial for the efficiency and versatility of the sampling algorithm.
The scale transformation group, alongside the affine and orthonormal transforma-
tion groups, stands out as a particularly potent choice for updating sample points
in a high-dimensional space. These groups offer a structured approach to modify-
ing the sample space, which can enhance the exploration capabilities of the Gibbs

sampler.
To elaborate on the scale transformation group, consider the operation that
updates a sample point x = (z1,...,274) € R? to a new point x' = (yz1,...,774),

where v € R\ {0} is a scaling factor. This operation can be formalized by defining
the scale-transformation group I' as the set of all scaling transformations:

= {yx:y e R\ {0}, x e R},

where vx represents the component-wise scaling of the vector x by the factor .

The choice of the distribution from which to sample the scaling factor v is piv-
otal. In the context of a generalized Gibbs sampling algorithm, + should be drawn
from a distribution that is proportional to |y|¢~!m(yx). This choice ensures that the
scaling operation respects the target probability distribution 7 and maintains de-
tailed balance, which is a necessary condition for the Markov chain to be stationary
and converge to the desired distribution.

The proportionality to |y|~! accounts for the change in the volume element un-
der the scaling transformation, which is essential for preserving the invariant measure
of the Markov chain. Specifically, when ~ scales the sample point x, the Jacobian
of the transformation contributes a factor of |y|?. By sampling v in proportion to
|v|77t, we effectively cancel out the |y|? term, ensuring that the overall transition
probability is invariant to the scaling of x.

This approach to sampling the scaling factor « is a key component of the general-
ized Gibbs sampling algorithm. It allows for a controlled exploration of the sample
space by scaling the current sample point, which can lead to more efficient mix-
ing and faster convergence to the target distribution 7w. The scale-transformation
group I', therefore, provides a mathematically principled and computationally fea-
sible strategy for updating sample points in Gibbs sampling schemes.
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5.3.12 Transformation-Invariant Markov Transition Function

Theorem 3. Transformation-Invariant Markov Transition Function Sup-
pose Ay (7,7') L(dvy) is a Markov transition function that leaves the distribution

Px(7)dy oc w(y(x)) [y (x)| L(d),

invariant and satisfies the following transformation-invariant property:

A (7)) = Ay (170,70) 5

for all v,7",v € I'. lf x ~ 7 and v ~ Ax (7Vid, ), then w = v(x) follows 7.

The inference is straightforward that the local transition function Ay ought to
remain unaffected by the choice of reference point x on the group’s “orbit” {y : y =
v(x),v € I'}. This stipulation is fulfilled if Ax(7,~’) takes the form g{px(7),px(7")}-

Proof. We want to show that if Ay (v,7’) is of the form g {px(7),px (7))}, then the
transformation-invariant property holds.

Let x ~ 7 and let v,7',7 € I' be arbitrary transformations. We have the
following equality by the definition of A:

Ax (1,7 = g9 {px(7),px (1)}
=g {py(;lx(vvo),pwglx(v’%)}
= A -1 (10:7%)

where the last equality follows from the property of the function ¢ being dependent
only on the probability densities evaluated at the transformations.

This shows that Ay (7,7’) is invariant under the transformation of the reference
point x, which completes the proof. O

5.4 Parameter Expansion

The primary objective of parameter expansion is to construct an augmented model
that encompasses the original model while incorporating the extra parameter «.
This expanded model is given by p (yops, W | €, @), where y s represents the observed
data, w denotes the missing data, and 6 is the parameter of interest. The parameter
« is termed as the expansion parameter because it expands the scope of the model
to include additional variation or structure that is not captured by 6 alone.

The choice of « is strategic, as it allows the original model to be seamlessly
embedded within the broader framework of the expanded model. This is achieved
by ensuring that the marginal distribution of the observed data, when integrated
over the missing data w, remains unchanged. Mathematically, this is expressed as:

/p(YObS)W | (9,04) dw = f(YObs | ‘9) .

This integral demonstrates that the observed-data model f (yos | ) is preserved
even when the expanded model p (yops, W | 0, ) is considered.
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The introduction of a can lead to more efficient Markov Chain Monte Carlo
(MCMC) algorithms by allowing for more effective exploration of the posterior dis-
tribution. It can also improve the mixing properties of the MCMC, leading to better
convergence and more accurate inference.

To facilitate the explanation, we use the notation w to represent the missing data
Ymis under the expanded model. This is done to differentiate the missing data in the
expanded model from that in the original model. To apply the data augmentation
algorithm to the expanded model, we must define a joint prior distribution p(f, «)
for the parameters 6 and «.

5.4.1 Consistency of Posterior Distributions

The posterior distribution for the parameter 6 should remain consistent when moving
from the original model to the expanded model. This consistency is achieved if the
marginal prior for # from the joint prior p(6, a) matches the prior f(#) of the original
model. This condition can be formally stated as:

/p(@,a)doz = f(0).

This integral ensures that the marginalization over « yields the original prior
for 8. Given the condition above, we can focus on specifying the conditional prior
p(|0) while keeping the marginal prior for  unchanged at f(#). It is important to
note that the posterior distribution of « given the observed data y,.,s and # remains
p(a|0), as o cannot be directly inferred from the observed data alone.

5.4.2 Transformation Group and Expanded Likelihood

In many practical scenarios, based on Theorem 1, the parameter o corresponds to
an element of a transformation group, which is applied to the missing data y,,s.
This transformation allows for more global exploration of the missing data space,
leading to a more efficient algorithm. The expanded likelihood, which incorporates
the transformation indexed by «, is given by:

p(Yobs7W | @70) = f<YObsvta(W> | 9) |J04(W)| )

where t, (W) represents the transformation applied to the missing data w, and J,(w)
is the Jacobian of this transformation.

The PX-DA Algorithm

The Parameter Expanded Data Augmentation (PX-DA) algorithm is an iterative
procedure that incorporates the expansion parameter o. The algorithm is outlined
below:

1. Draw yomis ~ f (Ymis | 0, Yobs)-

2. Draw a ~ p (Oé ‘ yobsaymis) X f (yobsu ta <szs)) |Ja (ymzs)‘ H(dOé) ComPUte
Ymis = ta (Ymis)-
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3. Draw 9 ~ f (9 | YOb57Y;nis)‘

Step 2 in the PX-DA algorithm effectively adjusts the missing data. When the
prior for « is proper, Liu and Wu (1999) demonstrated that the second step should
take the form of

1. Draw ag ~ p(a); compute w = ¢ (ynis)-

2. Draw a3 ~ p(a | Yobs, W) X [ (Yobs, ta(W)) |Jo(W)|po(c). Compute y. .. =
tal (t;ol (ymzs))

The second step of the PX-DA algorithm involves an adjustment of the missing
data based on the transformation indexed by . When a proper prior for « is used,
this step ensures that the distribution of the adjusted missing data is consistent with
the expanded likelihood.

When a Haar measure prior is used for «, the step of sampling from the prior
can be skipped, which is particularly advantageous when the Haar prior is improper.
This simplification can lead to more efficient implementation of the algorithm.

5.4.3 Invariance of the PX-DA Algorithm

Based on Theorem 2, Step 2 of the Parameter Expanded Data Augmentation (PX-
DA) algorithm is designed to leave the joint distribution of the observed and missing
data, f (Yobs, Ymis), invariant. This means that the probability of the observed data
and the distribution of the missing data remain unchanged after the execution of Step
2. As a direct consequence, the entire PX-DA algorithm maintains the invariance of
the posterior distribution, which is a critical property for ensuring that the algorithm
produces valid posterior samples.

Liu and Wu (1999) demonstrated a particularly advantageous property of using
a Haar prior for the expansion parameter . When the Haar prior is employed, the
adjustment of the missing data, denoted as y/, .. in Step 2, is conditionally inde-
pendent of the previous value of the missing data, y,.;s, given that both values lie
on the same orbit (or fiber) of the transformation group. This conditional indepen-
dence simplifies the sampling process and can lead to more efficient exploration of
the posterior distribution.

The conditional independence property implies that the new value of the missing
data, y! .., is determined solely by the current state of the observed data, y.s, and
the current value of the expansion parameter, a. This decoupling of the new missing
data value from its previous value reduces the correlation between successive samples
and can improve the mixing of the Markov chain, leading to more accurate posterior
estimates.

Given that Steps 2 and 2’ can be implemented with equal computational cost,
it is generally more preferable to use Step 2 over Step 2’ due to the aforementioned
benefits. The use of the Haar prior for o thus enhances the efficiency and effec-
tiveness of the PX-DA algorithm, making it a more attractive option for Bayesian
inference with missing data.
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5.5 Simulation Studies: Probit Regression

Let y = (y1,-..,yn) be a set of independent and identically distributed (i.i.d.)
binary observations drawn from a probit regression model. The ¢-th observation y;
is modeled as

yi | 0 ~ Bernoulli {® (X0)},

where X; € RP represents the vector of covariates for the i-th observation, 6 €
R? is the vector of unknown regression coefficients, and ® denotes the standard
Gaussian cumulative distribution function (CDF). The focus of the analysis is on
the posterior distribution of the parameter vector #, which is assumed to have a
flat prior, indicating a non-informative and uniform belief about its possible values
before observing the data.

To facilitate the computation of the posterior distribution, a ”complete-data”
model is introduced, which augments the observed data with a set of latent variables,
denoted as z1, ..., z,. The joint distribution of the latent variables and the observed
binary outcomes is given by

[2i | 0] ~ N (X{6,1),

Yi = sgn (ZZ) )

where sgn(z) is the sign function, taking the value 1 if z > 0 and 0 otherwise (Albert
and Chib, 1993). This formulation allows for a more straightforward application of
the Data Augmentation (DA) algorithm, which is an iterative method for sampling
from complex distributions.

The standard DA algorithm proceeds as follows:

1. For each i, draw z; ~ N (X/6,1) conditioned on the observed y;. Specifically,
if y; = 1, z; must be drawn such that z; > 0; if y; = 0, z; must be drawn such
that z; < 0.

2. Draw 6 ~ N (é, V), where 6 is the sample mean of the latent variables

weighted by the corresponding covariates, and V is the sample covariance
matrix of the latent variables, computed using the Sweep operator (Little and
Rubin, 2019).

One limitation of this approach is the strong correlation between the scales of
the latent variables z; and the parameter vector 6. The center of the distribution
of # given the latent variables is a weighted average of the z;, while the center of
the distribution of z; given 6 is X[6. To address this issue, a parameter-expansion
approach is considered.

The parameter-expansion approach introduces an expansion parameter «, which
modifies the distribution of the latent variables to

i 6] ~ N (X6, 0?),
Yi = sgn (w’L> ’
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where w; is a transformed latent variable, and « represents the variance of the
residuals. This transformation allows for a more flexible exploration of the parameter
space.

The Parameter-Expanded Data Augmentation (PX-DA) algorithm, detailed in
Section 5.4, follows the same initial step as the standard DA but modifies the sub-
sequent steps as follows:

1. Draw &2 ~ P;—%S, where RSS is the residual sum of squares calculated as

Zi <zi - X{é) n

2

2. Draw 6 ~ N (g, V), where § and V are updated to reflect the influence of the

expansion parameter o.

The PX-DA scheme can also be interpreted more abstractly as a method for
sampling from the target distribution m(#,z). This is achieved through an iterative
process that includes the following steps:

e Draw 6 from its conditional distribution 7 (6 | z).

e Update each latent variable z; using samples from its conditional distribution
T (zl | z[,i],ﬁ), fori=1,...,n.

e Draw a new value for the scaling parameter v from its conditional distribution
p(7y) o< v Iw(yz), and adjust the latent variables according to this new scale.

This approach provides a more flexible and robust framework for Bayesian in-
ference in probit regression models, allowing for more efficient exploration of the
posterior distribution and better handling of the latent data augmentation process.

5.6 Implementation and Comparison of DA and PX-DA on
Probit Regression Model

Consider a probit regression model: For ¢ = 1,...,n, given a vector of covariates
x; € RP, we observe the following probability distribution for the binary outcome
Y

Y; ~ Bernoulli(®(z] 3)).

Here, 5 € RP represents the vector of coefficients, and ® denotes the cumulative
distribution function of the standard normal distribution.

5.6.1 DA based Sampler

Consider augmented data Y,,, = ((V;, &))", where ¢; ~ N(z 3) represents a latent
variable. We only observe Y; = 14~q, which is an indicator function that equals
1 if ¢; > 0 and 0 otherwise. A non-informative prior is imposed on [, such that
p(B) o< 1. To implement the Gibbs sampler, we need to derive the full conditional
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distributions for § and ¢ = {¢1, ..., ¢n}. For the full conditional distribution of 3,
given the noninformative prior p(f) o 1, we have

P(31Y) o P(Y | §)P(9)
X exp —%(Xﬁ — )" (XB - ¢)]
T

X exp | —

(B'X'XB—B'X"¢—0¢'XB+ ¢T¢)1

X exp | —

N~ DN

(TXTX5— 2@%)} ,

which is the kernel of the normal distribution. Thus, we have the full conditional
distributions of 3 as

PEY)~N(5"5),
where §* = (X"X) " X7
Y= (XTX)".
The full conditional distribution for ¢; is

N(ziT,B,l)

ity, =1
1-®(z] ¢
- ifY;,=0
@(mjﬂ) ¢
2
where @ (2] 3) = f?oo % exp(—@)dz.

So the Gibbs sampler is implemented as below.

Step 1: Set the initial value for () and ¢(*) by MLE estimation from glm/()

Step 2: From the stept=1ton:

Simulate 3® from the full conditional distribution (1) given ¢t~

Simulate ¢ from the full conditional distribution (2) given 5

Step 3: Discard the first ny steps as the burn-in period and use the rest
{BY, ¢(t)}::n0 ., to construct the posterior distributions.

5.6.2 PX-DA based Sampler

Consider “parameter-expanded” augmented data Y, = ((Yi,s;))", where s; = z,
and o is given an improper prior p(c?) proportional to % Implement a Gibbs
sampler to sample from the posterior distribution of each parameter, taking into
account the expansion parameter o. Given (; = o¢;, by replacing ¢; with %, we can
get the full conditional distribution of 3 as

P 1Yo ~ N (L),
where 8* = (XTX) ™ X7¢
2= (XTx)"
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And we can also get the full conditional distribution of ( as

N (mj 05,02)

— s ifY, =1
1-®(z] oB,02 ¢
PGl gy b
q)—(:v-TJB,aQ) if Y; =0
z—a] o)’
Where (b (l';-ro'ﬁ, 0'2) = fi)oo 2171_0— exp (_%) dZ

Given

(C—XB)(C—XB)

~
o

2 n
The full conditional distribution of o2 is
(C—XB)"(¢—Xp)

2 .

P<O—2‘57C7Y)N Y

So the Gibbs sampler is implemented as below.

Step 1: Set the initial value for 3, ¢ and o2 by MLE estimation from glm()

Step 2: From the stept=1ton:

Sample 3® from the full conditional distribution (3) given (=1

Sample ¢; from the full conditional distribution (4) given 5@

Sample o2 from the full conditional distribution (5) given ¢* and )

Step 3: Discard the first ny steps as the burn-in period and use the rest
{B®,¢®), a(t)Z}::nO ., to construct the posterior distributions.

5.6.3 Comparison of the performance between two samplers

In this section, we evaluate the performance of the two sampling methods through
visual and statistical diagnostics. We run Gibbs Sampler n = 10000 steps with the
first half ng = 5000 steps as the burn-in period. Initially, we visualize the density
of the posterior distribution for §. Each graph represents an individual parameter.
The red curve illustrates the posterior distributions generated by DA based sampler
(Sampler 1(a)), while the blue curve represents those produced by PX-DA based
sampler (Sampler 1(b)). Additionally, we include the orange curve, displaying the
posterior distribution of 3 obtained via JAGS, where we apply Bayesian probit
regression with a non-informative prior for S.

The plot shows that the posterior distribution derived from the PX-DA-based
sampler closely aligns with the one obtained from JAGS, while the posterior from
the DA based sampler exhibits a noticeable deviation from the other two. This
discrepancy arises due to the linkage between the scale of 5 and ¢ in the DA based
sampler. The introduction of the additional parameter o liberates the scale of
from dependence on the scales of ¢ or (. Therefore, the posterior distributions from
sampler PX-DA based sampler and JAGS exhibit a congruent alignment.

A similar pattern emerges in the summary statistics, where the 95% credit in-
terval and the standard error from sampler 1(b) are close to JAGS but differ from
sampler 1(a).
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Figure 5: Comparison of distributions

2.5%  50% 97.5% Posterior SE

Sampler la

betal0] 1.672  2.602 3.619 0.492
betall] 3.048  3.991 5.061 0.532
betal[2] -2.192 -1.674 -1.241 0.252
betal[3] 2575 3.285 4.231 0.442
betal4] 0.535 0.841 1.182 0.166
Sampler 1b
betal0] 1.811 2944 4.292 0.631
betal[l] 3.133  4.563 6.234 0.806
beta|[2] -2.674 -1.911 -1.285 0.366
betal[3] 2513  3.746  5.249 0.708
betal[4] 0.567 0.952 1.406 0.219
JAGS
betal0] 1.842 3.021 4.526 0.674
betall] 3.277  4.608 6.428 0.807
beta[2] -2.735 -1.945 -1.323 0.364
betal3] 2.640 3.755 5.244 0.663
betal4] 0.585 0.954 1.421 0.213

Table 2: Summary Statistics

Convergence Diagnostics To perform convergence diagnostics, we simulate 5
chains with different initial values. After discarding the first half as a warm-up, we
have L steps in each chain. Then we split each into two parts. We now have m = 10
chains, each with n = L/2 steps. Then the between and within-sequence variances
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are calculated as

n mo 3 _ 1 n — 1 U
B = m_I;(¢.j—¢..)a where szﬁ;%’ ¥. :E;%’
1 1 n _
W = — Zs?, where s? e Z(@bia‘ - @Z’-j)z'
o i=1

The marginal posterior variance is calculated based on the weighted average of

B and W ) 1
" lwy B
n

vairt (¢ | y) =
Given this quantity overestimates the marginal posterior variance, we calculate
the potential scale reduction index by

R— Vaﬁ(@b | y)

w

We monitor this index as we increase the number of steps n to determine whether
the posterior sample convergences. The result is plotted as below. The potential
scale reduction is on the y-axis and the number of steps is on the x-axis. Each line
represents a parameter in the model. The red dashed represents the threshold value
1.2. As we increase the number of steps, both model 1(a) and model 1(b) show
convergence as the potential scale reduction falls below 1.2. Furthermore, model
1(b) shows a faster convergence at the earlier step than model 1(a).

Model 1(a) Model 1(b)
w - w -
— B — B
< B < B
B2 B2
® - gs ® ga
A A
R \ R
o~ o
Ne —_—
o - o
T T T T T T T T T T
5000 7000 9000 5000 7000 9000

Figure 6: Convergence of posterior samples

We can also check the convergence by plotting the posterior samples from dif-
ferent chains. For model 1(a), each f; shows the convergence with the chains (in
different colors) mixed up.

A similar pattern is observed in model 1(b) as each (; shows the convergence
with the chains (in different colors) mixed up.

Since the simulated sequences have mixed, we can also compute an approximate
effective number of independent simulation draws’ for the estimated 5. To calculate
the effective sample size, we estimate the correlations by computing the variogram
V, at each lag t:

1 m n
V= omTh DD (Wi — i)

=1 i=t+1

38



B1

B2

w -

<+ /i

M !\llﬂv Wi

Boql 1
“ Wy
50‘00 I 70‘00 I 90‘00 I
Ba
6 q: "‘,{lf’”»“l"" ff‘l

o -

o~

W

T T
5000

7000 9000

n

N ‘. {" [-l".l‘h1‘ ) MJ
VOl |
-y #

T T T T T T
5000 7000 9000

n

Bs

T ‘91

i M‘n‘w il

05 10 15

T T T T T T
5000 7000 9000

n

B3

-1.5

T B B

-25

"M v \ﬂ |
AL

5000

T T T T T T
7000 9000

n

Figure 7: Posterior samples from different chains
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Figure 8: Posterior samples from mixed up chains

Then the correlation can be estimated by

where var' is the marginal posterior variance calculated in the previous section.

pr=1-

Vi

2var

Then the effective sample size is calculated by

Neff =

mn

+

1+23 i

where T is the odd postive integer for which p” + 1 + p? 4 1 is negative. For each

interest parameter 3, the effective sample size is calculated as below
We can also plot the ACF of the 8 posterior samples.

From the ACF plot, we do not observe a fairly steep decline as the lag increases.
This suggests that samples are likely to be autocorrelated instead of being random
draws from a posterior distribution. Thus, we would like to add a thin rate in
selecting the posterior samples. Based on the effective sample size, for model 1(a),
we select every 20th value from the original posterior distribution. For model 1(b),
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beta[0] betall] beta[2] beta[3] beta[4]
Model 1a 49 28 32 30 64
Model 1b 876 721 759 736 990

Table 3: Effective Sample Size
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Figure 9: ACF of the 3 posterior samples

we select every Hth value from the original posterior distribution. We plot the ACF
again as below.

Model 1 beta2 Model 1 beta3 Model 1 beta4 Model 1 beta5

Model 1 betal

ACF

Model 2 betal Model 2 beta2 Model 2 beta3 Model 2 beta4 Model 2 beta5

ACF

Figure 10: ACF of the 8 posterior samples

In this case, we observe a fairly steep decline as lag increases, which means that
samples are likely to be random draws from the posterior distribution. We update
the result in Table 4.
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2.5%  50% 97.5% Posterior SE

Sampler la
betal0] 1.656  2.605  3.562 0.500

betall] 3.074  3.993 4.996 0.529
betal[2] -2.169 -1.666 -1.212 0.252
betal[3] 2.626  3.281 4.198 0.447
betal[4] 0.531 0.856 1.164 0.162
Sampler 1b
betal0] 1.791 2933 4.272 0.634
betal[l] 3.131  4.582  6.271 0.814
beta|[2] -2.665 -1.916 -1.297 0.368
betal[3] 2.520  3.755  5.266 0.716
betal[4] 0.542  0.952 1.389 0.224

Table 4: Summary Statistics

6 Conclusion

This report presents a comprehensive exploration into the augmentation of Markov
Chain Monte Carlo (MCMC) methods through Data Augmentation (DA) and Pa-
rameter Expansion (PE) techniques. Our investigation is grounded in the challenges
faced when applying Bayesian inference to complex, high-dimensional models, par-
ticularly those involving missing data. We have introduced the Parameter Expansion
Data Augmentation (PX-DA) algorithm, leveraging the mathematical framework of
left-(invariant) Haar measures on locally compact groups, to enhance the efficiency
and convergence properties of the traditional DA method.

Our theoretical analysis, supported by extensive simulation studies, demon-
strates the superior performance of the PX-DA algorithm. The improved mixing
and faster convergence rates of the PX-DA algorithm are attributed to the strategic
introduction of auxiliary parameters, which enrich the parameter space and facil-
itate more effective exploration of the posterior distribution. This approach has
significant implications for the Bayesian analysis of complex models, offering a ro-
bust framework for handling missing data and improving the overall reliability of
inferences.

The application of the DA algorithm to Bayesian curve fitting and logistic re-
gression models exemplifies its versatility and potential for practical implementa-
tion. Through simulation studies, we have illustrated the algorithm’s ability to
outperform traditional methods under various conditions, showcasing its utility in
advancing Bayesian computational techniques.

The PX-DA algorithm’s application to Probit regression has been shown to sig-
nificantly accelerate the convergence of the DA method. This enhancement is at-
tributed to the algorithm’s adeptness at efficiently navigating complex posterior
landscapes, leading to faster and more reliable Bayesian inferences. Collectively,
these findings underscore the PX-DA algorithm’s potential to transform Bayesian
statistical analysis.
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The findings of this report contribute to the broader understanding of MCMC
enhancements and offer a solid foundation for future research. Potential directions
for future work include the extension of the PX-DA algorithm to other Bayesian
models, further exploration of its performance in different settings, and the develop-
ment of more sophisticated transformation groups to tailor the algorithm to specific
applications.

In conclusion, our evaluation of the DA and PE techniques has demonstrated
their pivotal role in advancing Bayesian statistical methods for complex model anal-
ysis. The findings suggest that these approaches could lead to substantial improve-
ments in Bayesian inference efficiency and accuracy, with broad applications in sci-
ence and industry.
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