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ABSTRACT 

In the past half century, a number of researchers studied the correlation between 

shear wave velocity and SPT-N value based on the simple power-law regression 

model. However, the prediction performance is not good enough to apply in practice 

with confidence. It may be caused by using a single measurement of SPT-N and 

neglecting the influence of vertical effective stress and cone resistance. Therefore, 

those parameters are combined with SPT-N to establish new correlation models for an 

existing database in Macau in this study. 

In this project, nonlinear curve fitting algorithm and genetic programming in 

Matlab software were used for the correlation analysis between the shear wave 

velocity with SPT-N value, vertical effective stress and cone resistance, for database 

obtained from the LRT project. Correlation models with different format and different 

soil parameters are compared in order to obtain the improved performance of model 

prediction. 

Based on the results of this study, the prediction performance is improved based on 

the additional soil parameters combined to form correlation models with SPT-N. 

Comparing between vertical effective stress and cone resistance, cone resistance has 

better performance when combined with SPT-N to form power law regression model 

than vertical effective stress. In addition, the prediction performance has successfully 

improved when genetic programming was applied to establish correlation of shear 

wave velocity. However, the complexity of the correlation models from genetic 

programming, the format of which cannot be assigned directly, is much more complex 

than the simple power law function. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Shear wave velocity(V𝑠) is a fundamental geotechnical parameter that acts as the 

main input of site response analysis in geotechnical earthquake engineering.  

 

Standard Penetration Test (SPT-N) is basic soil parameter which is commonly used 

to indicate the density and compressibility of granular soils. It also commonly applied 

to estimate the liquefaction potential of saturated granular soils for earthquake design. 

In the past of half century, numbers of researchers trend to use regression statistical 

analysis to establish relationship between the shear wave velocity and SPT-N value in 

the worldwide. Macau had already been working this research in recent years. The 

motivation of this research is because the direct measurement of shear wave velocity 

need to deal with very high cost and lacked in workers with official qualification and 

skill to perform the shear wave velocity field test, numbers of research trends to 

applied the statistical regression method to modify correlation equations which can 

predicted accuracy data of shear wave velocity in a specific site condition without 

spend the extra money and time. 

Instead of SPT-N, some literatures published that the effective stress and cone 

penetration of soil are also necessary to take into account to reduce the statistically 

errors from neglecting the effect of the other representative parameters. On the other 

hand, numbers of the advanced computing software is widely applied in this 

geotechnical field research. Since the correlations between shear wave velocity and 

SPT-N values have considerable dispersions, it may due to the different condition of 

measurement of shear wave velocity and SPT-N values, geotechnical and geological 

conditions and the model type of regression statistical analysis.  
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For this study, the Matlab software was used to perform the correlation analysis. 

Regarding to get a higher prediction performance, Matlab software would be applied 

which contains powerful functions, such as nonlinear curve fitting. Moreover, a 

previous study suggested that Genetic Programming can perform a sufficient 

improvement for the correlation performance. In order to achieve those purposes, the 

Macau soil data set are selected from the final year projects of previous studies in 

University of Macau. 

 

1.2 Scope of Work 

There are three main parts in this Final Year Project. First part is to establish the 

new correlation between shear wave velocity and SPT-N value based on the same 

database of Macau soil. Second part is to establish the correlation of shear wave 

velocity with other parameters besides of SPT-N value. The last part is to establish the 

correlation of shear wave velocity by using genetic programming toolbox to establish 

the correlation. 

The quality improvement of shear wave velocity prediction can be compared for the 

correlation with using different method. The prediction performance can be 

determined by different statistical index, such as coefficient of determination (R2), 

root mean square error (RMSE). 

Finally, based on the existing database of Macau soils, the correlation model with 

the higher degree of accuracy can be obtained by comparing different correlation 

models. 

There are total 7 chapters in this study. Chapter 1 is included the introduction and 

scopes of this project. Chapter 2 is introduced some concepts, theories and data 

analysis and observation of prediction performance from the existing literatures. 
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Chapter 3 is introduced the geological background of Macau soil and measurement 

method of field tests. Chapter 4 is summarized the data analysis and observation of 

result from the final year projects of previous studies in University of Macau. Chapter 

5 is introduced the methodology of linear curve fitting and nonlinear curve fitting 

modeling, the corresponding models between this two different modeling are 

compared graphically. Chapter 6 is introduced data analysis and evaluation of new 

correlation models in this study. Finally, the conclusion of this final year project is 

summarized in Chapter 7. 
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CHAPTER 2LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the concept of correlation analysis based on the simple power-law 

regression and genetic programming (symbolic regression) will be introduced. 

However, the predication performance is not only based on the formation of 

regression models, it also affected by the unpredictable geological uncertainty, the 

influence of vertical effective stress, and the elimination consideration of the cone 

resistance. Those contents would be introduced in this chapter.  

 

2.2 Power-law regression 

There are many correlation models of shear wave velocity with SPT-N values 

established in the past various studies. Different correlation models were established 

by different location or period. Based on the literature that published from Electronic 

Journal of Geotechnical Engineering (EJGE), they established the new correlation 

equation between shear wave velocity and SPT-N value based on the 27 various 

locations with various years so that such correlation model can be applied to all soil 

types for everywhere.  

There are many different opinions may also take as the influence of the correlation 

equation between shear wave velocity and SPT-N value according to observation from 

various researchers. It manly included the soil type (Jafari 2002), depth (Holzer et al. 

2005), overburden pressure (Brandenberg 2010), Geological Age (Andrus et al. 2009) 

and corrected SPT N (Anbazhagan et al. 2012).   

Since the database was provided by 27 different researchers at different country and 

different years, they simplicity use the simple power-law correlation analysis to 
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establish the correlation model between shear wave velocity and SPT-N value, which 

express as: 

V𝑠 = 𝐴 × (𝑁60)𝐵                                           (2.1)                                             

where V𝑠 = 𝑠ℎ𝑒𝑎𝑟 𝑤𝑎𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑚/𝑠; 𝑁60 = 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒;  

A, B = the regression analysis coefficients. 

Since soil behavior is not homogenous in actual environment, the established 

correlation models only can apply to all soil type in order to reduce the complexity of 

data analysis. The comparison between 27 correlation models is illustrated in figure 

2.1. 

 
Figure 2.1 Established correlation models for all soil type. (Marto et al. 2013) 
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Since simple power-law statistical analysis was applied to establish the correlation 

between shear wave velocity and SPT-N value, the result of correlation model can be 

established based on two different methods, without outliner and with outliner. The 

accuracy predication performance is expressed by coefficient of determination (r2). 

First, the database of 27 correlations were established by different researchers and 

combined to establish the new correlation equations: 

                                                   V𝑠 = 69.76N0.401, 𝑟2 = 0.624.                               (2.2) 

where V𝑠 = 𝑠ℎ𝑒𝑎𝑟 𝑤𝑎𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑚/𝑠; 𝑁60 = 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒;  

The correlation model was illustrated with other 27 correlation models in figure 2.2. 

 
Figure 2.2 Correlation models based on previous 27 correlations for all soil types 

(Marto et al. 2013) 

 

The low value of coefficient of determination indicated the correlation model 

provided poor prediction performance. It might cause by the different practice of site 

investigation works and variation of geological conditions. Therefore, in order to 

improve the prediction performance, the distribution of the data was assumed 

normally distributed and identified the data located within the range of mean value± 

standard deviation were selected and acted as upper boundary and lower boundary, 
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respectively. In this case, the mean value of correlation was established based on 68.2% 

of whole data. 

Finally, the mean value of correlation with high boundary and low boundary 

correlation were established, this correlation model (with outliner) with previous 

correlation models were illustrated in figure 2.3. 

 
Figure 2.3 Correlation model with higher and lower boundary (Marto et al. 2013) 

 

Table 2.1the comparison between without outliner and with outliner (Marto et al. 2013) 

Dataset correlations r2 Remark 

Without outliner V𝑠 = 93.67N0.389 0.624  

With outliner 

V𝑠 = 93.67N0.389  Lower boundary 

V𝑠 = 77.13N0.377 0.876  

V𝑠 = 53.87N0.407  Higher boundary 

 

According to table 2.1, although the prediction performance have got significantly 

improved after outliner was excluded, however, there are no any convincing evidence 

to plot the regression correlations by lower boundary and higher boundary, so that it is 

not commonly recommend to perform the correlation equation in this way. 
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2.3 Geotechnical variability  

In the previous topic, single simple power-law regression model of shear wave 

velocity with SPT-N value was discussed. However, there are various types of 

geotechnical uncertainty influence the reliability of database and prediction 

performance of correlation equation. The influences cannot be evaluated directly 

based on the result of correlation model. For the source of those uncertainly was 

introduced in the chapter 2.3.1. 

 

2.3.1 Geotechnical uncertainty 

Geotechnical variability commonly contains in the natural soil environment, which 

is a complex behavior that observed from many unpredictable uncertainties. There are 

mainly three sources of geotechnical uncertainties were classified, which include 

inherent variability of soil, measurement error of operation, and transformation 

uncertainty of correlation model. The first type of uncertainty is mainly caused by the 

effects of natural environment. The second is caused by equipment quality, precision 

of operation, and random effects due to testing. In other words, inherent soil 

variability and effect of measurement error can be classified as data scatter. (Phoon & 

Kulhawy 1999). 

The third type of uncertainty is obtained when field test and laboratory test 

measurements are used to interpret design value of soil properties based on various 

empirical or other correlation models. Therefore, the contribution between those three 

primary uncertainties in the design of soil property clearly depends on the site 

conditions, degree of equipment and procedural operation control, and precision of the 

correlation model. In that case, the design value of soil properties can only be 

determined based on total variability analysis. (Kulhawy 1992)  
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The inherent soil variability which can be interpreted based on Coefficient of 

Variance (COV). However, there were facing some problems when started to 

calculate the COVs of inherent soil variability since most of the database reported 

based on total variability analysis, so that the reported COVs might result a relatively 

larger than the actual conditions. Four potential problems can be explained why this 

happened,  

1. soil data set was observed from uncertainty of geological; 

2. insufficient equipment quality and precision of  procedural; 

3. deterministic trends in the soil data are not removed; 

4. soil dataset were taken over a long time period.  

Therefore, the results were already examined critically based on the consideration 

given above. (Phoon & Kulhawy 1999). 

After the available data organized for the comparison purpose, it can summarize the 

general soil type, the number of data groups and tests per group, and the mean and 

COV of the soil property with corresponding soil parameters. Since the description of 

soil type is useful because the site-specific COVs are applicable to other locations and 

the soil type can be provided to similar soil profile. The number of tests is also a very 

useful to indicate the accuracy of the mean and COV estimates. If large number of 

tests per group can be performed, the corresponding errors can be minimized in the 

statistical point of view. (Phoon & Kulhawy 1999). 

According to their summary result, the COVs of inherent soil variability for 

standard penetration test is around 19 to 62% (from the best to the worst case). The 

reason why this large amount of range occurred is because of the number of tests per 

group, which around 2 to 300 times of tests per group. (Phoon & Kulhawy 1999). 
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For coefficient of variance of measurement error, since measurement error is highly 

depend on the equipment quality, precision control for procedural and random testing 

effects. In order to calculating the COVs of measurement error, those three factors 

were described as the COVs also and take root of sum of square to calculate the COVs 

of total measurement error and corresponding result is around 15 to 45 percents. 

(Orchant et al. 1988; Kulhway 1996) 

 

2.3.2 Transformation Uncertainty 

Transformation uncertainty is the last primary source of geotechnical uncertainty. 

Since the inherent soil variability and measurement error have already been 

introduced in pervious section, so that transformation uncertainty is introduced herein 

to extend the analysis. After that, the second-moment probabilistic approach was 

applied to combine with those three primary types of uncertainties based on which 

design soil properties are derived.  

The format of the transformation model is related to the computation method of the 

corresponding deign soil properties based on corresponding measurement data. 

However, the transformation models were commonly not applied with confidence 

because of the low quality of prediction performance. It is because most of 

transformation models are obtained based on standard power law regression function 

and the data scatter can only be quantified using probabilistic methods. In this method, 

they used regression analyses approach to establish the transformation model, and the 

data from the regression curve were modeled as zero-mean random variable. The 

standard deviation of this variable can be used to indicate the magnitude of 

transformation uncertainty, as illustrated in figure 2.4. 
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Figure 2.4 the probabilistic characterization of transformation model. (Phoon & 

Kulhawy 1999). 

Transformation uncertainty should be evaluated separately with the other two types 

of uncertainties. In order to achieve this result, the selection of the database should be 

satisfied by using least square approach to minimize the effect of inherent soil 

variability. Moreover, the data set should be measured by same standard approach in 

order to reduce the systematic measurement errors. (Kulhawy et al. 1992) 

Some of transformation models for the corresponding design soil properties and test 

measurements were summarized based on geotechnical literature. The availability of 

these models for a soil properties have been determined from various theory, 

laboratory test or field test, which also included standard penetration test. However, 

most of the transformation models were based on the empirical method or without 

sufficient theory to support the model evaluation. Therefore, the total transformation 

uncertainty for those empirical model cannot be determined directly, but it found that 

they were likely to be as large as the result for the transformation model when the 
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second-moment statistics method was applied, especially for the correlation model for 

standard penetration test N value with stress strength properties, liquefaction 

resistance or the other parameter which is not directly related to standard penetration 

test N value. However, it still without convincing evidence to say that it can be 

predicted without considering the significant uncertainties. (Kulhawy & Mayne 1990) 

 

2.4 Influence of vertical effective stress 

The correlation relation between shear wave velocity and SPT-N value were mainly 

established by the simple power-law regression. However, the prediction performance 

was commonly not good. According to the previous sections, it mentioned that 

increase the number of test per group or using the site-specific condition database can 

get an improvement of prediction performance. On the other hand, the influence of 

effective stress was not commonly considered in the simple power-law regression 

analysis. (Brandenberg et al. 2010) 

 

2.4.1 Physical relationship between SPT-N and vertical effective stress 

In order to evaluate the influence of effective stress, the existing database was 

collected at various California Bridge sites between 1993 and 2001. It was applied to 

establish the correlation model between shear wave velocity, SPT-N value and vertical 

effective stress. The common overburden correction equations of 𝑁60  and V𝑠  were 

applied in equation, which can be represented by: 

(N1)60 = (
Pa

σ′
v
)

n

N60                                                 (2.3) 

Vs1 = (
Pa

σ′
v
)

m

Vs                                                        (2.4) 
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where N60 = SPT blow count; (N1)60 = stress-normalized SPT blow count; σ′
v =

 effective vertical stress, kN/m2; Pa = atmosphere pressure, kN/m2; Vs = shear wave 

velocity, m/s; Vs1 = stress-normalized shear wave velocity, m/s; 

m, n = empirical constants 

 

2.4.2 Application of Least Square approach 

Based on the substitution from equation (2.3) and (2.4), the correlation equation can 

be shown as: 

Vs = 87.8N60
0.253(

Pa

σ′
v
)0.253n−m                                      (2.5) 

where n, m = empirical constants; N60 = SPT blow count; Pa = atmosphere 

pressure,  kN/m2 ; Vs = shear wave velocity, m/s; σ′
v = effective vertical stress, 

kN/m2; 

The magnitude of exponent n and m depend on soil type, cementation, and 

plasticity index, however, this is commonly hard to estimate the value of m and n, 

especially when the directly geophysical measurement is not available. Therefore, the 

least-squares approach was applied to solve this problem. The corresponding 

statistical random regression model had been linearization and can be shown: 

ln(Vs̅)ij = β0 + β1 ln(N60)ij + β2 ln(σ′
v)ij + ηi + εij               (2.6) 

where N60 = SPT blow count; Vs = shear wave velocity, m/s; σ′
v = effective 

vertical stress, kN/m2;ηi = random effect for ith boring (i.e. inter-boring effect); εij =

 variation for the jth measurement from ith boring (i.e. intra-boring effect);  β0, β1, β2 =

 regression constants; ηi = inter-boring variation; εij = intra-boring variation 

The random effect and variation of measurement for the each boring are assumed to 

be independent and normally distributed with two different terms of standard 

deviations. It permitted the possibility that might over-predict the measurement of 
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shear wave velocity for some location and under-predict for others. (Brandenberg et al. 

2010) The simple power-law regression between shear wave velocity and SPT-N 

cannot provide this feature. 

The regression results based on equation (2.6) are represented for sand, silt and clay 

correspondingly by using the lmer function in R, which is the open-source software 

environment for statistical computing. Since it involved both N60 and  σ′
v, the multi-

variable regression model are required. In order to have a fair comparison of the 

relative influence of N60 and σ′
v between each soil type, the models contain with the 

mean value and plus and minus one standard deviation for N60 and  σ′
v. 

 
Figure 2.5 Results of regression model for sand, silt and clay with trend lines 

corresponding to the mean and ±1σ for N60 and σ′
v (Brandenberg et al. 2010) 

 

According to comparison between those trend line function, it can be obtained that the 

influence of effective stress are highest at the sand fill layer, but this influence 

becomes weaker for silt and clay soil layer. (Brandenberg et al. 2010) 
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2.4.3 Intra-boring effect 

Based on the equation (2.6), the intra-boring residuals defined in equation 2.7 and 

illustrated for each soil type in figure 2.6. 

                          εij = ln(Vs̅)ij − [β0 + β1 ln(N60)ij + β2 ln(σ′
v)ij + ηi]                  (2.7) 

where N60 = SPT blow count; Vs = shear wave velocity, m/s; σ′
v = effective 

vertical stress, kN/m2;ηi = random effect for ith boring (i.e. inter-boring effect); εij =

 variation for the jth measurement from ith boring (i.e. intra-boring effect);  β0, β1, β2 =

 regression constants; ηi = inter-boring variation; εij = intra-boring variation 

The mean of the residuals equals to zero, and no trend is obtained in the residuals 

with either N60 and σ′
v, which indicates that there is no bias respect to those input 

variables and the standard deviation of the intra-boring residuals decreases as vertical 

effective stress increases, it indicated the model would provide poor relation at low 

depth. The reason of that correlation decrease at low depth is not clear, but it could be 

caused by the field test method, such as suspension logging.  

The standard deviations of subsample were plotted versus the logarithm of the 

subsample mean  σ′
v  values and apply the linear least square to fit based the 

measurement data. The result are commonly indicates silt and clay depend only 

weakly on σ′
v. (Brandenberg et al. 2010) 
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Figure 2.6 Intra-boring residuals versus N60  and σ′

v  for sand, silt and clay. 

(Brandenberg et al. 2010) 

 

2.4.4 Inter-boring effect 

For evaluate effect of inter-boring, the residuals of inter-boring were plotted as 

surface geologic epoch function with respect the Holocene, Pleistocene, and Pre-

quaternary surface geology epochs. (Knudsen et al, 2009)  
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Figure 2.7 Inter-boring residuals as functions of surface geologic epoch. (Brandenberg 

et al. 2010) 

 

A positive value of inter-boring residual indicates the median value of Vs̅  is 

predicted by equation 2.6 would under-predict the measured value. It can be easily 

found that a weak trend occurred when the residual of inter-boring decrease with 

geologic age. It indicates when N60 value is given, the corresponding Vs value 

decreases as age increases. The result indicates little effect of geologic age contained 

on the correlation between Vs and N60. (Sykora & Koester, 1988) 

Since the correlation equation of shear wave velocity has been established based on 

standard penetration resistance and vertical effective stress, the statistical error from 

the most of geotechnical literatures are assumed that the effect of effective stress is 

neglected. However, this kind of assumption or correlation functions cannot be 

applied commonly or only suitable for rare cases. In order to eliminate this kind of 

error, it is necessary to establish the new correlation functions for predict the shear 

wave velocity.  
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Although the prediction performance had been improved, it is still contain some 

uncertainly which increased dispersion in ground motion predicted from shear wave 

velocity. Therefore, it is also suggested that if the directly measurement is available, 

the proposed correlations should be avoided. 

 

2.5 Influence of Cone Resistance 

The relationships between cone resistance (𝑞𝑐) and shear wave velocity (V𝑠)were 

investigated since the early 1980s. These investigations have shown that cone tip 

resistance, cone sleeve friction, confining stress, depth soil type, and geologic age are 

factors that influencing the relationship. There are often obtained that the correlation 

relationship between 𝑞𝑐  and V𝑠  were mostly developed for either sand or clays, 

without intermediate range of soil types. 

 

2.5.1 Prediction performance between shear wave velocity and cone resistance 

According to the literature “Prediction of the shear wave velocity Vs from CPT and 

DMT at research sites”, it demonstrated that the non-seismic dilatometer tests (DMT) 

have more reliable and consistent prediction performance compare with Cone 

Penetration Test (CPT). The reason is cone resistance parameter scarcely detected the 

pre-straining or aging of soil structure. (Amoroso 2013) 

 

2.5.2 Bustamante and Gianeselli method (1982) 

  Since the cone resistance is commonly contained some significant variation in a 

certain depth. In order to apply this soil parameter to estimate shear wave velocity, 

Bustamante and Giasenelli method is used in this study. 

  This method was designed according to 197 pile load (and extraction) tests analysis 

at a wide area of foundation with each specific soil types. 
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  The equivalent average cone resistance,q𝑐𝑎, at the base of the pile used to compute 

the pile unit end bearing,q𝑝, is the mean q𝑐 value measured along two fixed distances 

a (a = 1.5D, where D is the pile diameter) above (−a) and below (+a) the pile tip. It 

suggested that in order to calculate q𝑐𝑎 in three steps, as shown in Figure.2.8. 

1. Calculate mean value of cone resistance between – a and +a. 

2. For the data between – a to +a which is higher than 1.3 time the mean value of 

cone resistance, and the data between mid-depth to -a that lower than 0.7 time the 

mean cone resistance would be eliminated.  

3. Calculate the corresponding mean value of cone resistance again to equal 

equivalent average cone resistance. 

 

Figure 2.8 Elimninationr equirement of equivalent average cone resistance (Lunne et 

al. 1997) 
 

2.6 Genetic Programming 

Since simple power-law regression analysis commonly applied to establish the 

correlation between shear wave velocity and SPT-N value based on same research 
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literatures, however, the prediction performance is not good enough so that it cannot 

be applied to most of sites. After that, a new statistical correlation approach was 

published to establish those two measured parameters, which is Genetic Programming 

computing algorithm. It can available to achieve more accuracy correlation model. 

Regarding to various literatures about the correlation between shear wave velocity 

and SPT-N values, it also have different approaches and suggestion to analysis the 

correlation relations and it can be generally summarizes to two reasons, one is the 

correlations between shear wave velocity and SPT-N values have considerable 

dispersals. This may be due to various measurement methods used to measure the 

shear wave velocity and SPT-N value, geotechnical and geological conditions and so 

on. Another reason is the low quality of prediction performance for this type of 

regression analysis to establish the correlation relation between those two parameters. 

 

2.6.1 General introduction and setting of Genetic Programming 

Genetic Programming (GP) is one of advanced computing approach which can 

suitably be used for pattern recognition purposes. Some of the parameters are 

necessary to define first before run to computing software program.  

Population of GP is represented by parse trees, including non-linear individual 

entities of different sizes and shapes. Individuals are structures consisting of functions 

and terminals, which both are selected out from larger set of functions and terminals. 

Each function contains basic arithmetic operators (plus, minus, cross, and so on.) and 

Boolean logic functions (AND, NOT, and so on.) and also user defined functions. 

However, terminals contain constant parameters that form the whole individual 

structure together with functions. In each generation, these functions and terminals are 

selected randomly and can form many individuals with different fitness values. The 
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fitness value strongly depends on the definition of fitness function, which is the most 

influential element in GP. In the current study, the fitness function is root mean square 

error. At each step, by selecting the best individuals and then breeding them together 

using GP operations, such as cross-over and mutation, a new generation will be 

created. (Searson 2009) 

The procedure could be continued until the predefined fitness value was obtained or 

reached the specified number of generations. Therefore, the best individual will be 

proposed or specified number of generations was reached. At the end, the best 

individual will be proposed as the best model between inputs and output data. The 

GPTIPs 1.0 toolbox for MATLAB software was used in this literature analysis. 

(Searson 2009) 

 

2.6.2 Evaluation between Simple Regression and Genetic Programming 

According to the literature “A New Statistical Correlation between Shear Wave 

Velocity and Penetration Resistance of Soils Using Genetic Programming”, it 

provided a database which contained 613 pairs of shear wave velocity and SPT blow 

count, which measured in Iran. The data of SPT-N was mainly measured by down-

hole method, and also seismic refraction and Spectral Analysis of Surface Waves 

method (SASW). These measurement data are carried out by different soil types, such 

as sand, silt and clay. 

In this literature, they applied the simple power-law regression equation which 

shown in Equation. The corresponding correlation model can be obtained in equation 

2.8. 

  Vs = 129.4N0.336                                                 (2.8) 

where Vs = shear wave velocity, m/s; N = uncorrected SPT blow count 
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For Genetic Programming method, it commonly separate 80% of all data were set 

in to training sub-set and remaining part of data were included into testing sub-set , so 

that the maximum, minimum, mean and standard deviation of Vs and SPT-N in two 

sub-sets were as equal to each other as possible. 

In order to evaluate the prediction performance of the correlation models, 

coefficient of determination (R2), root mean square error (RMSE), and mean absolute 

error (MAE), which the corresponding calculation equations are: 

R2 = 1 −
∑ (mi−pi)2n

i=1

∑ (n
i=1 mi−m̅)2                                           (2.9) 

RMSE = √
∑ (mi−pi)2n

i=1

n
                                       (2.10) 

MAE =
∑ |mi−pi|n

i=1

n
                                              (2.11) 

where m = the values of measured Vs in the field; p = predicted Vs by the proposed 

model; m̅ = mean measured value; n = the number of data presented in database 

After that, the best fitting function was selected by comparing the values of R2, 

RMSE, and MAE, which is expressed as following equation form: 

Vs = 136.581 +
0.0576N

A
+

10.88527N

A+2.91052
+

1.35276

A+1.18224
+

6.39661

A−0.4613
−

1.4529

A+0.17753
−

2.9866

A+1.03558
                                                                                                 (2.12) 

where A = 0.01918N − 2.3876 ; Vs = shear wave velocity, m/s ; N =  uncorrected 

SPT blow count; 

The corresponding prediction performance of the simple regression correlation 

model and Genetic Programming model summarized based on the value of 

the R2,RMSE, and MAE, which also shown in table 2.2. 
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Table 2.2 Summarization of prediction performance between GP based model and 

simple regression analysis based model (Barkhordari et al. 2013) 

 
 

According to table 2.2, l a significant better performance was created by GP based 

model compare with simple regression analysis based model. In that case, it should be 

mention that the use of soft computing methods, such as evolutionary computing and 

artificial neural network can considerably improve the accuracy of Vs estimation 

using penetration resistance of soils. 
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CHAPTER 3 FIELD TESTING 

3.1 Introduction 

Macau is a Special Administrative Region of China, which is situated on the 

southeast coast of China and the west shore of Pearl River. There are three parts of 

Macau area, namely the Macau peninsula, the Taipa, and the Coloane Islands. The 

total amount of area equals to 30.3 km2 which contains a large portion of the region is 

from land reclamation. The soil profile of the reclamation area is a layer of fill 

covering the marine deposit, followed by alluvium of alternating sand and silty clay 

which overlies the completely decomposed granite and the bedrock.  

Due to the rapid economic growth, there are many infrastructures under 

construction in Macau, such as Hong Kong Zhuhai Macau Bridge project, Macau 

public housing and LRT, etc. Although there had many tests performed on the 

engineering properties of the Macau soil, but it can only refer to the static loading 

condition. It is not enough since the reclamation area is usually due with very large 

dynamic soil behavior, such as deformation and settlement. Therefore, the 

investigation of the dynamic soil behavior is important.  

Shear wave velocity is a soil parameter commonly used for study of the dynamic 

behavior research. Although it preferable to determine shear wave velocity directly by 

field test, however, it deal with very high cost, space constraints and lacked in workers 

with official qualification and skill to do the shear wave velocity field test. On the 

other hand, SPT-N is significant soil parameter along with shear wave velocity. These 

two parameters are also widely used to describe in soil characteristic. Therefore, the 

determination of shear wave velocity by using the correlation with SPT-N value is one 

of the important studies in geotechnical engineering research. In order to improve 
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from the previous correlations, vertical effective stress and cone resistance are also be 

considered. 

Based on the database information which provided by the same research of Final 

Year Project, the field tests which performed in this research included down-hole 

seismic test and cross-hole seismic test, standard penetration test and cone penetration 

test. The detail description of each test is discussed in the following.  

 

3.2 Standard Penetration Test 

Standard Penetration Test is a field testing commonly used in worldwide for 

indicates the density and compressibility of granular soils. It is can be used to check 

the consistency of stiff or stony cohesive soils and weak rocks. On the other hand, it 

can also be applied to estimate the liquefaction potential of saturated granular soils 

which relative to earthquake design and decision of foundation design for both 

shallow and deep foundation. 

According to the ASTM D1586, the test procedures of SPT are described in the 

following, and the visually test performance is shown in figure 3.1. 

 Rest the split spoon on the bottom of the borehole. 

 Drive the split spoon with the 140-lb. hammer falling 30 (760 mm) in and count 

the number of blows applied in each increment until either a total of 50 blows in 

any one increment, or a total of 100 blows is reached, or there is no observable 

penetration, or the full penetration of 18 in (450 mm) is achieved. 

 Repeat the previous two steps for every 5 ft (1.5 m), homogeneous strata reached, 

and at every stratum change. 

 Measure the blow courts for each 6 in (150 mm) penetration. If a full drive is 

achieved, add the blows for the last 12 in (300 mm) of penetration to measure 
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SPT-N. On the contrary, the blow courts record for each measurement or part 

increment (precision as 1 in) should record on the boring log.  

 

 

 

Figure 3.1 Standard Penetration Test (ASTM D 1586) 

 

3.3Cone Penetration Test 

Cone Penetration Test is commonly used for the situ investigation of soil for 

engineering purposes. In this test, a cone on the end of rods is pushed into the ground 

constantly and continuous measure the resistance to penetration of the cone defined as 

cone resistance, qc, and of a surface sleeve defined as local side sleeve friction, fs. 

There are several of size and shape of penetrometers being used for corresponding site 

investigation. The standard size of the penetrometers for most countries is the cone 

with an apex angle of 60° and a base area of 10 cm2 with a friction sleeve having an 

area of 150 cm2, which the shape of cone is shown in figure 3.2. For mechanical cone, 
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it can be advanced separately by means of sounding rods pushed vertically into the 

soil at a constant rate of 2 cm/sec. Initially, the cone is pushed through a distance of 5 

cm to measure qc, it can also measure both qc and fs with further advance type of 

cone. For the electric cone type, it can be measured independently and continuously 

with penetration by means of load cells installed the body of the probe. It could also 

measure pore water pressure with the filter element placed close behind the cone. The 

result of cone resistance can be used as input parameter and applied into the 

corresponding correlation equation to obtain the soil parameters, such as bearing 

capacity, Young’s modulus of elasticity, compression index, etc. 

By comparing to the other field test techniques, CPT has some advantages for the 

purpose of soil investigation which include to the following: 

 The test equipment can be easily and quickly mobilized to the site. 

 provide information on soils under undisturbed or natural conditions 

 provides a continuous record of data measurement for investigated soil depth 

 provides repeatable and reliable data which not depend on operator  

 Lack of theoretical support for CPT data interpretation. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Cone penetration tip 
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3.4 Measurement method of Shear Wave Velocity 

3.4.1 Seismic Test 

Since the dynamic geotechnical properties of soil are very important for the site 

investigation purpose or decision of foundation design, the corresponding field test are 

carried out in the field need to be high accuracy. Therefore, seismic test is commonly 

applied for the measurement of shear wave velocity, which mainly included Down-

hole seismic test and Cross-hole seismic test.  

The actual parameters that directly measured in seismic test are Compression wave 

(P-wave) and Shear wave (S-waves). Compression wave can travel through solid and 

fluid but often limited to unsaturated soils. Shear wave can travel through soil 

structure but not for solid and fluid, it also used to determine the elastic shear modulus 

in low strain level.  

Although there are various types of field test are capable for the measurement of 

low strain shear wave velocity profile, however, the considerable reliability can be 

obtained from the seismic test. The detail information for these two types of seismic 

tests are introduced in section 3.4.2 and 3.4.3 respectively. 

 

3.4.2 Down Hole Seismic Test (DS) 

The objective of seismic down-hole tests is to measure travel times of P and S-

waves from the energy source to the receiver. These tests can be performed in single 

borehole. A hole is drilled to the required depth at the testing site and a vibrating 

source is created to determine shear wave velocity for various soil layers. In this case, 

the waves travelling in vertical direction either down or up depending on the location 

of the source of impulse. 
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In down-hole seismic test, the generated waves propagate through the soil layers in 

downward direction. A single wave source is located on the ground surface adjacent to 

the borehole. In the edge of the borehole, either a string of multiple receivers at known 

depths is fixed or a single receiver is moved to different depths as the test advances. 

All receivers are connected to high speed recording system Freedom Data PC and the 

output is measured as a function of time. The configuration of the Down hole Seismic 

Test as shown in figure 3.3. 

 

3.4.3 Cross Hole Seismic Test 

The simplest Cross-hole test consists of 3or more boreholes with 3 meter spacing, 

one for a P-SV source and another for a receiver. By fixing both the source and the 

receiver at the same depth, the wave velocity through soil/rock material between the 

holes is measured for the depth. By testing at various depths a velocity profile against 

depth can be obtained. 

The boreholes are typically 76mm to 100mm in diameter cased with PVC casing. 

Formulated mixture grouting around the casing should be performed to fill up the 

spacing between casing and soil. All cables should be connected and checked properly 

by running the checking function of system controlling program Win-GEO before 

putting down the P-SV source and triaxial geophones into boreholes. 

The source and geophones are clamped firmly into place at decided depth with the 

rope cleat, and then air is pumped to the bladders attached at the source and the 

geophones, The impulse source is activated and both captured signals from geophones 

are displayed simultaneously on the Freedom Data PC. The signal amplitude and 

duration should be adjusted such that shear wave traces are displayed entirely on the 

monitor, same procedure is repeated at every 1.5 m interval (in some cases of this 
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project is reduced to 1.0 m interval) until the final depth. The configuration of the 

cross hole Seismic Test as shown in figure 3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Downhole Seismic Test 

 

 
Figure 3.4 Cross hole Seismic Test 
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3.4.4 Seismic Cone penetration test 

The seismic cone penetration test are used to measures the shear wave velocity. It 

allows the small strain shear modulus (G0) and the constrained modulus (M0) to be 

evaluated. The small strain shear modulus is an important parameter for reduction of 

ground surface motions from earthquake excitation, evaluation vibrating of 

foundations, offshore structures behaviour due to wave loading, and the prediction of 

deformations at surrounding area of excavations. 

Seismic cone penetrometer is a memory oscilloscope and an impulse source with a 

trigger for the oscilloscope. The source can consist of a steel beam for the generation 

of shear (S) wave or a flat plate for the generation of compression (P) wave.    

The shear wave source usually perpendicular to cone and pressed against to ground by 

the weight of the hammer and CPT vehicle and penetration is stopped for each 1 m 

intervals. During the rest in penetration process, shear waves is generated at the 

ground surface and send to reach the seismometer and the corresponding travel time 

required for the shear wave is measured. The shear wave is generated by using 

hammer to hit the beam end horizontally. The computer in the CPT rig collects and 

processes all the data from the CPT or CPTU. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Seismic Cone Penetration Test 
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CHAPTER 4 RESULT OF PREVIOUS STUDY 

4.1 General 

The establishment researches of the correlation between shear wave velocity and 

standard penetration blow count for Macau soil have been working in recent year, the 

databases which obtained from SaeTeng (2009), Pun Hou Kun and Chao Sai Choi 

(2010), and Kuan Wai Kin (2011) are selected. 

For SaeTeng (2009), there are five site investigation project databases were carried, 

which are University of Macau, Ocean World, Chun Su Mei, Oriental Golf Course 

and Vehicle Detention Centre and Rua de Seng Tou. Cross-hole seismic test and 

down-hole seismic test were applied at those site locations to measure the shear wave 

velocity of the soil with corresponding depths, in order to establish the correlations 

equation with SPT-N value. 

For Pun (2010), the location for site measurement of the shear wave velocity is 

mainly was the site of Rua de Seng Tou, Taipa. Cross-hole seismic test, down-hole 

seismic test and cross-hole seismic SPT (CS-SPT) were performed to measure the 

shear wave velocity. The correlation relation between shear wave velocity and SPT-N 

values were established based on the database for Rua de Seng Tou only. Moreover, 

the combined correlation relations between the Pun (2010) and SaeTeng (2009) was 

established. The corresponding test location for Pun (2010) and SaeTeng (2009) is 

shown in figure 4.1.  
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Figure 4.1 all test location for Pun (2010) and SaeTeng (2009)  
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For the Kuan Wai Kin (2011), the corresponding site project investigation for 

establish the new correlation relations between shear wave velocity and SPT-N values 

was provided from the LRT C-250 project. There are five boreholes were contained in 

this project, the corresponding locations were shown in figure. 4.2. 

 
Figure 4.2 the corresponding locations of five boreholes for LRT C-250 project 

The depths of five boreholes are around 18m to 66m. Down-hole seismic test and 

seismic-cone penetration test (S-CPT) were performed for the measurement of shear 

wave velocity measurement. The new correlation relation between shear wave 

velocity and SPT-N values are also obtained based on the LRT C-250 project only. It 

also combined with previous two correlations relation results to establish the new 

correlation relation in order to fit in those three project cases.  
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4.2 Study of SaeTeng (2009) 

According to the research result from SaeTeng (2009), it contains 102 data points 

which obtained based on the representative strata profiles and dynamic properties. 

There are 3 correlation equations between shear wave velocity and SPT-N value based 

on the soil type, which mathematic models express in 4.1 to 4.3. 

Vs = 82.14N0.337       (all soil with 0 < N≦100)          (4.1) 

Vs = 65.95N0.4         (granular soil with N≧10)          (4.2) 

Vs = 71.12N0.522          (clayey soil with N≦10)         (4.3) 

where Vs = shear wave velocity, m/s; N = standard penetration test N value 

Notes that the uncorrected blow-counts applied in these correlations for the initial 

result exhibits the energy ratio of SPT hammer in Macau is around 80 to 90 %.  

In order to evaluate the correlation models visually, the corresponding graphical 

models with log scale express in figure 4.3 to 4.5 respect to those 3 models, and the 

coefficients of determination ( R2)  also determined to evaluate the prediction 

performance. 

 

 

 
Figure 4.3 Correlation between Vs and SPT-N value for all soils (equation 4.1) 
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Figure 4.4 Correlation between Vs and SPT-N value for granular soil (equation 4.2) 

 
Figure 4.5 Correlation between Vs and SPT-N value for clayey soil (equation 4.3) 

 

Based on the observation from those three different correlation models, it can be 

demonstrated that the result are compromised with the inherent disadvantage of SPT 

method where it does not estimate well for clayey soils. In contrast, the better 

prediction of Vs is obtained for granular soils can be reached by elimination of clayey 

factor.   
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Figure 4.6 Regression lines of all soils, granular soil and clayey soil 

After the three different models were plotted in figure 4.6, it can be obtained that 

the difference between the regression models of those three is very small. Therefore, it 

preferred to applied regression models of all soils to estimate Vs without concern the 

miscellaneous process in ground response analysis. 

 

4.3 Study of Pun and Chao (2010) 

According to the research result from Pun and Chao (2010), it contains 48 data 

points based on the investigation at Rua de Seng Tou, Taipa and calibrated with the 

correlation equations of SaeTeng (2009). The correlation model between shear wave 

velocity and SPT-N based on the dataset from Pun and Chao is shown in equation 4.4. 

The same correlation model combined with SaeTeng (2009) is shown in equation 4.5. 

Moreover, the graphical expression (with log scale of SPT-N value) for equation 4.4 is 

shown in figure 4.7. It also made the comparison between SaeTeng (2009) with Pun 

and Chao (2010) in figure 4.8, and the comparison between SaeTeng (2009) and 

combination between SaeTeng (2009) and Pun and Chao (2010). 

                                                           Vs = 114N0.214                                               (4.4) 

                                                           Vs = 94.7N0.296                                               (4.5) 

where Vs = shear wave velocity, m/s; N = standard penetration test N value 



38 

 

 
Figure 4.7 Correlation model for Pun and Chao (2010) 

 

 
Figure 4.8 Comparisons between SaeTeng (2009) and Pun and Chao (2010) 
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Figure 4.9 Comparison between SaeTeng (2009) and combination between SaeTeng 

(2009) and Pun and Chao (2010) 
 

Based the comparison in figure 4.8, it can be obtained that the correlation model for 

Pun and Chao (2010) determine the larger value of Vs when SPT-N less than 100, and 

determine smaller value of Vs when SPT-N bigger than 100.  

For the comparison in figure 4.9, although the database from the SaeTeng (2009) 

and Pun and Chao (2010) were combined to examine the new correlation model, 

however, the different is not significant larger by comparing with correlation model 

for SaeTeng (2009). 

 

4.4 Study of Kuan WK (2011) 

For Kuan WK (2011), there are two different correlation models were applied based 

on the database of LRT C-250 project.  

4.4.1 CPT-qc model 

It first applied the data of cone resistance qc and Vs to establish the corresponding 

prediction performance. The establishment of the database is based on the following 

assumption: 
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 a corresponding average qc was calculated for the same depth interval (below 1 

meter) of the Vs record; 

 each pair of qc and Vs was referred to the mid-depth of the corresponding 

measurement; 

 the specific gravity for the clay layer is assumed to be 2.75; 

 The prediction is not made at those depths where they types of soil is unknown; 

 The prediction is not made at those intervals where the value of qc is not 

completely measured. 

For modification method of the first correlation model in Kuan WK (2011), the 

correlation models between qc and Maximum Shear Modulus would be applied. The 

selection of correlation model would be different depends on the soil types. 

G𝑚𝑎𝑥 = 1634(𝑞𝑐)0.250(𝜎′
𝑣)0.375             (sand)             (4.6) 

G𝑚𝑎𝑥 = 406(𝑞𝑐)0.695(𝑒)−1.130                 (clay)             (4.7) 

where G𝑚𝑎𝑥 = maximum shear modulus, kPa; 𝑞𝑐 = cone resistance, kPa; 

𝜎′
𝑣 = effective stress, kPa; e = void ratio 

. In order to calculate the Maximum Shear Modulus based on those two equations, 

the corresponding effective stress and void ratio are necessary to calculate. 

   𝜎′
𝑣 = 𝜎𝑣 − 𝑢                                                     (4.8) 

   e =
𝐺𝑠𝛾𝑤−𝛾𝑠𝑎𝑡

𝛾𝑠𝑎𝑡−𝛾𝑤
                                                     (4.9) 

where 𝜎′
𝑣 = effective vertical stress, kPa; 𝜎𝑣 =  total vertical stress, kPa; 𝐺𝑠 = 

specific gravity of soil; 𝛾𝑠𝑎𝑡 = saturated unit weight of soil, kN/m3; 𝛾𝑤 = unit weight 

of water, 9.81 kN/m3 
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After the Maximum Shear Modulus determined based on the equations that 

provided, the corresponding shear wave velocity can also be determined. 

     V𝑠 = √
𝐺𝑚𝑎𝑥

𝜌
                                                   (4.10) 

where Vs = shear wave velocity, m/s; 𝐺𝑚𝑎𝑥 = Maximum Shear Modulus, Pa; 

𝜌 = density of soil, kN/m3 

In order to evaluate the prediction performance, the comparison result with respect 

to actual measured Vs were shown. 

 
Figure 4.10 Comparison of calculate Vs (CPT-qc model) with respect to measured Vs 
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Table 4.1 Data distribution for each zone (CPT-qc model) 

Zone Number of data fall in Percentage of data fall in (%) 

1 0 0 

2 4 6.06 

3 14 21.21 

4 22 33.33 

5 26 39.40 

6 0 0 

Percentage of over-

predicted, % 
27.27 

Percentage of under-

predicted, % 
72.73 

Percentage of ±25% 54.54 

 

4.4.2 SPT-N model 

For SPT-N model, there are two correlation model were examined by power-law 

regression model, first is based on the database which obtained from LRT C250 (Kuan 

2011) project. Second is based on the database which combined by SaeTeng (2009), 

Pun and Chao (2010), and Kuan (2011). These two correlations model are expressed 

in equation 4.11 and 4.12, respectively. 

                                                      V𝑠 = 139.4𝑁0.216                                               (4.11) 

                                                      V𝑠 = 118.1𝑁0.229                                               (4.12) 

where Vs = shear wave velocity, m/s; N = standard penetration test N value 

In order to evaluate those two SPT-N models, the measured database from the LRT 

C-250 project would be acting as Validation data set to compare with the calculated 

Vs which predicted from those two correlation models. The corresponding prediction 

evaluation result is shown in below. 
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Figure 4.11 Comparison of calculated Vs based on the correlation equation 4.11 with 

measured Vs based on LRT C250 

 

 

Figure 4.12 Comparison of calculated Vs based on the correlation equation 4.12 with 

measured Vs based on LRT C250 
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Table 4.2 Data distribution for each zone (equation 4.11 and 4.12) 

 Equation 4.11 Equation 4.12 

Zone 
Number of 

data fall in 

Percentage of 

data fall in 

(%) 

Number of 

data fall in 

Percentage of 

data fall in 

(%) 

1 0 0 0 0 

2 8 11.27 4 5.63 

3 27 38.03 19 26.76 

4 26 36.62 26 36.62 

5 10 14.08 28 30.99 

6 0 0 0 0 

Percentage of 

over-predicted, % 
49.3 32.39 

Percentage of 

under-predicted, % 
50.7 67.61 

Percentage of 

±25% 
74.65 63.38 

 

Based on the prediction performance for those three models respect to LRT C-250 

project, the correlation equation 4.11 would provide the best prediction performance, 

simply because the correlation model is based on the same dataset. For the comparison 

between the CPT-qc model and SPT-N model (equation 4.12), the SPT-N model 

would perform the better prediction performance compare with the CPT-qc model. 

The prediction performance for each model can also be evaluated by following 

indexes, as shown in table 4.3. 

Table 4.3 Evaluation index of comparison of proposed models 

Model Type Sum of square error Data points RMSE R2 

CPT-qc 329258.16 66 71.73 0.328 

SPT-N (4.11) 202788.50 71 53.82 0.448 

SPT-N (4.12) 285022.70 71 40.83 0.446 
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CHAPTER 5 METHODOLOGY 

5.1 Current Database 

According to the database of LRT-C250 which was concluded by previous final year 

project, there may contain some outliers which are highly concerned the prediction 

performance of correlation models in this study. In order to identify the outlier, the 

correlation model for all soil which was established by Kuan Wan Kin (2011) was 

applied to plot with the database of LRT project in figure 5.1. 

 
Figure 5.1 the correlation model of Kuan WK (2011) for all soil with 72 data points 

According to figure 3.6, there are 6 data points (down hole: 3, cross hole: 3) were 

identified as outliers because they were generally under-predicted regarding to the 

correlation model. On the other hand, the measurement of low value of shear wave 

velocity with high SPT-N value is not respect to the actual physical meaning. The 

reason to cause these unreliable measurements is due to the complexity of soil 

structure and the precision of measurement. Therefore, the prediction performance of 

correlation model is affected if these outliers are selected into correlation analysis. 
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5.2 Linear Regression Analysis (EXCEL) 

According to the Final Year Project of Kwan WK in 2011, The simple power-law 

regression analysis method were applied to identify the line or curve functions that are 

able to provide the best function based a set of data points. The reason to apply this 

method is because the curves functions can be identified a trend relationship by using 

linear, parabolic, or some other formation. There are various methods in regression 

analysis can be performed by using different computing software. Microsoft Excel 

software was applied into the research of establishment of correlation equation 

between shear wave velocity and SPT N value in 2011.The formation of the 

correlation equation is form by power law function, as shown in equation 5.1. 

 V𝑠 = 𝐴 × (𝑁)𝐵                                                (5.1) 

where V𝑠 = shear wave velocity, 𝑚/𝑠; 𝑁 = standard penetration blow count; 

A, B = the regression analysis coefficients 

The method of how to interpret the regression analysis coefficient is based on the 

linear Least-Square method. It is fair to mention that a rigorous functional dependence 

from the experimental data is seldom observed, since each of the involved magnitudes 

can depend on many random or unpredictable factors. Although the result that 

determine from the correlation equation is not equal to the measurement data, this 

approach is still be able to justify due to the practical utility of the obtained correlation 

equation. 

 

5.2.1 Root mean square error (RMSE) 

The demand of the proximity of the measured values from the original database 

with the predicted values by using correlation equation is based on examine the 

minimum root mean square error (RMSE), which the formula is shown in equation 5.2.  
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RMSE = √
∑ (mi−pi)2n

i=1

n
                                        (5.2) 

where m̅ = mean of measured values; n = the number of data presented in database 

 

5.2.2 Linear Least Square method 

Since power-law function is assigned in this research, in order to find the best fit of 

this function types so that the RMSE is minimum, the detail steps is show in following. 

First, the power law function with two parameters is shown in equation 5.3. 

y = F(x, a, b) = axb                                          (5.3) 

where: a,b = regression parameter 

However, power law function is not a linear function, therefore, it is necessary to 

extract the natural logarithm which respect to equation 5.3 with assuming a>0, then 

the formula is reformed and shown in equation 5.4. 

ln F = ln a + b ln x                                            (5.4) 

In order to make the equation look easier, ln a , ln x  and ln F  are make the 

substitution to u, v and w, respectively. The formula express as a linear function: 

w = ∅(v, u, b) = u + bv                                   (5.5) 

where u = ln a  ;    v = ln x   ;     w = ln F 

It is necessary to take the derivative for equation 5.5, respect to coefficients u and b. 

∂∅

∂u
= 1,       

∂∅

∂b
= v                                              (5.6) 

Using linear least square method to solve the coefficients,  

{
∑ [mi −n

i=1 ∅(vi, u, b)] 
∂∅

∂u
= 0

∑ [mi −n
i=1 ∅(vi, u, b)] 

∂∅

∂b
= 0

                                (5.7) 

Substitute the 
∂∅

∂u
 and 

∂∅

∂b
 

{
∑(mi − u − bvi) = 0

∑(mi − u − bvi)vi = 0
                                           (5.8) 
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Calculate the summation of vi, mi, vi
2 and mivi for solving the equation 5.9. 

{
u +

b

n
∑ vi =

1

n
∑ mi

u

n
∑ vi

2 +
b

n
∑ vi

2 =
1

n
∑ mivi

                                   (5.9)  

where n is the number of database. 

After the coefficients u and b solved, it should be cautioned that the coefficient u 

need to transform to an exponential function to compute the coefficient a, which is 

respect to the equation 5.4.  

      a = eu                                                    (5.10) 

 

5.2.3 Coefficient of determination (R2) 

In order to evaluate the prediction quality of the corresponding correlation functions, 

Coefficient of Determination (R2) equals to the square of the Pearson function 

moment correlation coefficient r in Excel. The correlation coefficient can be used to 

identify the extent of a linear relationship between two data sets. 

r =
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2 ∑(𝑦−𝑦̅)2
                                         (5.11) 

For the correlation functions is power law functions, Vs = AN𝐵  (lnVs = BlnN + A).  

where 𝑥 = lnN; 𝑦 = lnVs. 

The reason of these two parameters need to take the logarithmic is because the 

power law function is nonlinear function. Since the correlation coefficient is only 

based on the linear relationship of the function and the model transformation between 

nonlinear function to linear function, as shown in equation, the identification of 

corresponding dataset is necessary to transform. 

After correlation coefficient is determined, the coefficient of determination can be 

calculated by square of the correlation coefficient. It can be interpreted as the 

relationship of the variance proportion in y dataset to the variance in x dataset. 
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In this study, power law regression model are applied to establish shear wave 

velocity. However, the power law function is nonlinear function. It is necessary to 

transform to linear function by take logarithm for each parameter in order to fit in the 

linear least square approach, as mention in section 5.2.2. Therefore, this process 

should be avoided.  

 

5.3 Nonlinear curve fitting  

5.3.1 Curve fitting tool 

In order to solve the coefficients for the power law function by using nonlinear least 

square method, the Matlab software is applied in this research. Curve fitting toolboxes 

is a very powerful and convenience functions, which are available to solve various 3 

dimensional curves or surface fitting problem. 

Curve Fitting Toolbox are allowed user to set an option of the fitting model if the 

model is not performed the expectation of user, the fitting option are included Robust, 

Algorithm, Finite Differencing Parameters, Fit Convergence Criteria and Coefficient 

Parameter. The concept and corresponding setting would be described in following. 

 

5.3.2 Robust 

Robust : which is used to specify whether use robust least-squares fitting method. 

It can be set Off, On or LAR. 

• Off — robust fitting do not applied (default). 

• LAR — using minimize the least absolute residuals method to fit. 

• Bisquare— using minimize the residuals and reduce the weight of outliers using 

bisquare weights. It is common the best choice for robust fitting. 
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5.3.3 Algorithm 

• Trust-Region—which is the default algorithm in Matlab curve fitting tool for the 

nonlinear curve fitting purpose, and must be applied in the situation that if the 

lower or Upper coefficient constraints are specified. 

• Levenberg-Marquardt— it is not commonly applied except if the trust-region 

algorithm cannot provide a reasonable fitting curve or surface, or the Lower or 

Upper coefficients are not specified. 

•  

5.3.4 Finite Differencing Parameters 

• DiffMinChange— Minimum change in coefficients for finite difference Jacobians. 

• DiffMaxChange— Maximum change in coefficients for finite difference Jacobians. 

 

 

5.3.5 Fit Convergence Criteria 

• MaxFunEvals— Maximum number of function (model) evaluations.  

• MaxIter— Maximum number of fit iterations.  

• TolFun —  Termination tolerance used on stopping conditions involving the 

function (model) value. 

• TolX —  Termination tolerance used on stopping conditions involving the 

coefficients. 

 

5.3.6 Coefficient Parameters 

• StartPoint— The starting values of regression coefficient depends on the format of 

model.  
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• Lower — Lower limit on the regression coefficients. To indicates the unconstrained 

coefficients, -Inf is defaulted for most library models. 

• Upper — Upper bounds on the fitted coefficients. The tool only uses the bounds 

with the trust region fitting algorithm.  

 

5.3.7 Optimized Starting Points and Default Constraints 

If the starting points are optimized, the model was fitted heuristically based on the 

existing data set in Matlab.  

If constraints were not applied to model, the starting points and constraints of the 

coefficient can be overridden by values setting in the Fit Options dialog box. 

 
Figure 5.2 the Fit Options dialog box  

 

Notes that StartPoint for each fitting models would be different since the Curve 

Fitting Toolbox can automatically optimize the starting point for power-law regression 

model.  
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5.3.8 NonLinearModel.fit 

There had some limitation about the number of parameters in Curve Fitting 

Toolbox, it only provided 2 or 3 parameters for the curve fitting analysis. Regarding to 

correlation between shear wave velocity and SPT-N value, there are many 

unpredictable uncertainly in actual site situation. Therefore, effective stress and cone 

resistance are taken into the correlation analysis of shear wave velocity. The influence 

of neglect the effective stress and cone resistance have introduced in Character 2.4 and 

Character 2.5, respectively.  

For the influence of the cone resistance, based on the correlation regression functions 

between the Maximum Shear Modulus and cone resistance is same to the correlation 

between shear wave velocity and SPT-N value. 

G𝑚𝑎𝑥 = 𝐴 (𝑞𝑐)𝐵                                              (5.12) 

where G𝑚𝑎𝑥 = maximum shear modulus, kPa ; qc = cone resistance, kPa ; A, B = 

correlation coefficients 

Moreover, the physical relation between Maximum Shear Modulus and shear wave 

velocity. 

  V𝑠 = √
G𝑚𝑎𝑥

𝜌
                                                    (5.13) 

where Vs = shear wave velocity, m/s; G𝑚𝑎𝑥 = maximum shear modulus, kPa; 𝜌 = 

density of soil, kg/m3 

Regarding to equation 5.12 and 5.13, it has been considering that the cone 

resistance also contain the similar power-law correlation functions. 

  Vs = 𝐴′ (𝑞𝑐)𝐵′                                               (5.14) 

where Vs = shear wave velocity, m/s; qc = cone resistance, kPa; A’, B’ = correlation 

coefficients 
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Based on the SPT-N, effective stress and cone resistance has the similar correlation 

relation with shear wave velocity. It can be estimated the new formation of correlation 

functions in order to take all those parameters into one equation.  

                                          Vs = A′′ (N)𝐵′′(σ′
𝑣)𝐶′′(𝑞𝑐)𝐷′′                                       (5.15) 

where Vs = shear wave velocity, m/s; N = standard penetration resistance;σ′
𝑣  = 

effective stress, kPa; 𝑞𝑐  = cone resistance, kPa; A′′ , B′′ , C′′ ,  D′′  = correlation 

coefficients 

However, since this regression analysis is involved four parameters, Curve Fitting 

Toolbox cannot be applied in this regression analysis. Therefore, in order to solve this 

nonlinear regression functions, the “NonLinearModel.fit” functions which is provided 

in Matlab would be applied. The operation of this function is not convenience 

compare with Curve Fitting Toolbox. An extra function file necessary to be assigned 

in Matlab software in order to generate the “NonLinearModel.fit” function based on 

the regression model. On the other hand, each parameter is identified into a matrix and 

the initial (guess) value is necessary to assign for the curve fitting operation purpose. 

The advantage of this method there has not the limitation of the number of parameters. 

It is helpful if there have any addition parameters or data are available to be taken into 

this research analysis.  

 

5.3.9 Levenberg-Marquardt algorithm 

The concept of this function is same as the Curve Fitting Toolbox, it also applied 

the Levenberg-Marquardt algorithm to solve the type of nonlinear least square 

problem. It is clear that the purpose of curve fitting is to minimize the value of sum of 

square for corresponding fitting function f(x).  

minimize
x

f(x) =
1

2
‖𝐹(𝑥)‖2

2 = ∑ 𝐹𝑖
2(𝑥)𝑖                          (5.16)      
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where F is the vector-valued functions 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥) ⋯ 𝑓𝑚(𝑥))𝑇; f(x) is the 

residual for the corresponding data point 

The reason why the least square function has been derivatives by 
1

2
 is to make the 

derivatives of the functions become less cluttered. In this curve fitting method, it can 

control where the output, y(x,t), minus the continuous model trajectory, φ(t), for 

vector x and scalar t. This problem can be expressed as:  

           min
x∈R

∫ (y(x, t) − φ(t))2dt
t2

t1
                                (5.17) 

where y(x, t) are measured sclar functions;  φ(t) are predicted scalar functions. 

When the integral is discretized using a suitable quadrature formula, it can be 

formulated as a least-squares problem: 

min
x∈R

f(x) = ∑ (y̅(x, ti) − φ̅(ti))2m
i=1                      (5.18) 

where y̅ and φ̅ include the weights of the quadrature scheme. 

Therefore, the problem respect to the vector function𝐹(𝑥) can be express as: 

                                                  F(x) = [

y̅(x, t1) − φ̅(t1)

y̅(x, t2) − φ̅(t2)
⋯

y̅(x, tm) − φ̅(tm)

]                                    (5.19) 

In this least square method, the residual ‖𝐹(𝑥)‖ is reduced to the smallest value (0) 

as possible. It is general practice based on the setting of initial value. Although the 

function in Least Square can be minimized using unconstrained minimization 

technique, certain characteristics of the problem is still contained and exploited to 

improve the iterative efficiency of the minimization process of least square.  

It is necessary to examine the gradient vector, Jacobian matrix (first derivative of 

F(x) respect to regression coefficient) and Hessian matrix of F(x) for solving the Least 

Square problem. 
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                                                    G(x) = J(x)TF(x)                                                 (5.20) 

                                                    H(x) = 2J(x)TJ(x) + 2Q(x)                                 (5.21) 

                                                    Q(x) = ∑ Fi(x)Hi(x)m
i=1                                        (5.22) 

where G(x) = the gradient vector of f(x); H(x) = the Hessian matrix of f(x) 

Let xk be the solution of this Least Square problem, which indicates the residual 

‖𝐹(𝑥)‖ and Q(x) tend to zero. The Gauss-Newton direction can be used as a basis for 

an optimization procedure when ‖𝐹(𝑥)‖ is small at the solution. However, it is often 

encounter problems when the Q(x) is significant. Therefore, the Levenberg-Marquardt 

method is applied, because it can overcome this problem. The search direction of this 

method can be expressed as a linear set of equations. 

[J(xk)TJ(xk) + λkI]dk = −J(xk)TF(xk)                   (5.23) 

where λk  = Damping factor; I = Identity matrix; dk =  search direction which 

obtained at each major iteration 

The Damping factor λ can control both the magnitude and direction of dk, which 

the initial damping factor λ0 can be set by own evaluation. Since the damping factor is 

adjusted in each iteration, if the damping factor is close zero when the reduction of 

‖𝐹(𝑥)‖ is large, the search direction of dk is close to Gauss-Newton algorithm. On the 

other hand, if reduction ‖𝐹(𝑥)‖ is small, the damping factor will increase and the 

search directiontends to the steepest descent direction with the magnitude tend to 

equal to zero. It indicates for some sufficiently large value of  λk, and F(xk + dk)still 

less than 𝐹(xk). Therefore, the damping factor λk is decreasing even when second-

order terms restrict the efficiency of the Gauss-Newton method is encountered. 
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5.3.10 Operation  

In order to applied the “NonLinearModel.fit” function in Matlab, First, a new 

function file which contain formation of fitting model. Second, insert the relative 

database and set the initial (guess) value for each regression parameter (1 is 

commonly set as initial value in this research). Finally, input the “NonLinearModel.fit” 

function code as shown in below. 

betahat = NonLinearModel.fit(unnamed4,unnamed,@curvefittingqc,unnamed5) 

where betahat = regression parameter result; unnamed4 = predictor variable (i.e. 

SPT-N, qc, σ′
𝑣); unnamed = response variable (i.e. Vs); curvefittingqc = fitting model; 

unnamed5= initial (start) guess value for each parameter. 

Instead of the Matlab function can calculate the fitting models without spend 

significant time, it also calculate the corresponding evaluate index at the same time, i.e. 

R2, RMSE, etc. The example of the result after the “NonLinearModel.fit” functions 

run would be shown in Figure 5.3.  

 
Figure 5.3 the result for the power-law regression between Vs and qc (5.12) calculated 

by Matlab “NonLinearModel.fit“ function. 
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Notes the calculation equation of the R-squared and Root Mean Squared Error is 

shown in equation 5.24 and 5.25, respectively. 

R2 = 1 −
∑ (mi−pi)2n

i=1

∑ (n
i=1 mi−m̅)2                                        (5.24) 

RMSE = √
∑ (mi−pi)2n

i=1

n
                                      (5.25) 

where m = the values of measured Vs in the field; p = predicted Vs by the proposed 

model; m̅ = mean of measured values; n = the number of data presented in database 

 

5.4 Genetic Programming 

According to the literatures from the EJGE and the correlation analysis result which 

respect to Macau soil, the simple power law regression is not available to provide a 

good enough prediction performance for the SPT-N and Shear Wave velocity. 

Regarding to improve the prediction performance, EJGE was published that Genetic 

Programming software (GP) can achieve the higher prediction performance, therefore, 

it is decided that the genetic programming software is be applied to Macau soils in 

order to obtain the higher prediction quality. The concept of this computing software 

is introduced in this chapter. 

 

5.4.1 General 

GP is an advanced computer programs that used to perform the significant 

prediction potential regression model with numbers of tree structure. It can be 

modified after a population of computer programs (represented by tree structures) is 

generated. A new population is created by the best performing trees though the 

mutating and crossing over process. This process is iterated until the population 

contains programs that provided a desirable solution.  
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When GP is going to build an empirical model based on existing database, it often 

classify as symbolic regression. It is not similar to the standard regression analysis that 

the structure of the mathematical model must be specified, GP can evolve both the 

structure and the parameters of the model automatically.  

 

5.4.2 GPTIPS1.0 

GPTIPS1.0 is a Matlab toolbox software which is widely applied to various 

discipline research in recent year. Multigene symbolic regression formed a unique 

type of symbolic regression which is applied in GPTIPS1.0. It evolves linear 

combinations of non-linear transformation of the input variables. GPTIPS1.0 can 

provide a number of convenient functions which can use to explore the population of 

evolved models, investigating model behavior, post-run model simplification and 

export to different formats. One of the main features of GPTIPS is that it can be 

configured to evolve Multigene individuals. 

 

5.4.3 Multigene individuals 

A Multigene individual model can be assembled with one or more genes. Each of 

genes expresses as a “traditional” GP tree and acquired incrementally by individuals 

in order to improve fitness. The fitness approach is commonly similar to least square 

method on a data set that respect to the corresponding model. 

 

5.4.4 Symbolic Regression 

Symbolic regression is assembled by a population of trees which evolve by genetic 

programming. A (N × 1) vector of outputs y is predicted by symbolic regressions 

which contain one variable. For a multi-variable model, the outputs of y is formed a 
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(N × M) matrix. Where N indicates the number of measurement data and M indicates 

the number of input (predictor) variables. 

 

5.4.5 Multigene Symbolic Regression 

For Multigene Symbolic Regression, the regression model is formed by linear 

combination of each gene, and the gene is formed nonlinear combination. In GPTIPS, 

the least square approach is applied to obtain the optimal solution for the 

automatically. The prediction ŷ of the each output variable y is constructed by each of 

the trees or genes weights in the multigene individual (multi variable model) plus a 

bias term (constant). Each tree is a function of zero or more of the N input variables 

x1, ⋯ xN. 

Mathematically, a Multigene regression model can be written as: 

                                   ŷ = d0 + d1 × tree1 + ⋯ + dM × treeM                             (5.26) 

where d0 = bias (offset) term; d1, ⋯ , dM = the gene weights; M = the number of 

genes (trees); 

This model structure contains non-linear terms but is linear in the parameters with 

respect to the coefficient (gene weights). In GPTIPS, the user need to defined 

constraints of the maximum number of genes Gmax and maximum tree depth Dmax 

before it is evolved automatically during a run based on training data and evaluate the 

evolved model by using testing data.  

Training Data – a set of inputs values and output values which is determined by 

directly measurement. 

Testing Data – another set of input and output values which are used to evaluate the 

prediction potential. 
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Since the linear coefficients (d0, d1, ⋯) are estimated based on the training data by 

using least squares approach. Therefore, Multigene GP combined with traditional 

linear regression approach and contained non-linear term without specify the structure 

of the nonlinear regression models before the establishment the regression model.  

 

5.4.6 Crossover and Mutation 

For genetic programming, there are numbers of individuals (models) are created by 

generated trees with between 1 and 𝐺𝑚𝑎𝑥 genes, where 𝐺𝑚𝑎𝑥 represent the maximum 

number of genes contain in one single individual. The initial populations is 

constructed after each individuals are generated. Two point high level crossover 

operator is applied to exchange or eliminate between the genes during the GPTIPS is 

running. If the 𝑖th gene in an individual is represent Gi, then this crossover operator is 

performed in the following.  

Let the 3 genes (G1G2G3) is contained by first individual (model) and the other 4 

genes contained by second individual (model). The genes are selected randomly 

between each individual by two crossover point. The genes enclosed by the crossover 

points are denoted by 〈⋯ 〉. 

Individual 1: (G1〈G2〉G3)                                                     Individual 2: (G4〈G5G6G7〉) 

If the maximum number of genes equals to 5, the gens enclosed by the crossover 

points and exchanged between these two genes and formed two new individuals, as 

shown in below. 

New individual 1: (G1G5G6G7G3)                                         New individual 2: (G4G2) 

New genes for both individuals are produced or removed after two point high level 

crossover applied. If an individual is contained more genes than Gmax after the gens 

exchange, the additional genes are randomly selected and deleted until the individual 
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contains Gmax genes. The process is operating continuously until the assigned number 

of generation is reached. 

 

5.4.7 General setting 

In GPTIPS1.0, the regression model is not concrete format as simple power-law 

regression. The created models are represented in tree-based structures as express in 

5.26. GPTIPS1.0 uses the lexicographic tournament selection approach to control the 

complexity of the model, the corresponding setting in this research shown as Table 5.1. 

 

Table 5.1 Setting of initially defined parameters in GPTIPS1.0 

Parameter Value 

Population size 100 

Number of generations 100 

Tournament size 1 

Maximum depth of trees 5 

Function set + , – , × , ÷ 

Maximum number of genes 2 

Constants range [-10, 10] 

 

5.5 Evaluation 

Based on the Chapter 5.1 and 5.3, it introduced that the power-law regression 

approach are different between Excel and Matlab. For Excel, the corresponding 

nonlinear regression model is necessary to transform to linear regression, and apply 

the linear least square method to compute the regression constants. For Matlab, the 

nonlinear curve fitting is directly applied to regression model and compute the 

regression constants. Since the regression approach is different between Excel and 

Matlab, the corresponding regression model is also different. In order to compare the 

difference, the correlation models are calculated again by using Matlab based on the 

same database which obtained from previous study. The correlation models are 

organized and shown in table 5.2. On the other hand, in order to improve the 

prediction performance of same database, Genetic Programming toolbox (GPTIPS1.0) 
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is also applied based on the setting which is shown in Table 5.1, and the 

corresponding GP-model is shown in equation 5.27. 

Table 5.2 Comparison of the correlation model between linear curve fitting and 

nonlinear curve fitting 

Database 
Data 

point 

Correlation Model 

Linear curve fitting Nonlinear curve fitting 

SaeTeng, 2009 73 Vs = 82.13𝑁0.336 Vs = 68.1𝑁0.406 

Pun and Chao, 2010 48 Vs = 114𝑁0.214 Vs = 109.1𝑁0.239 

KuanWai Kin,2011 71 Vs = 139.4𝑁0.216 Vs = 137𝑁0.243 

Combined  192 Vs = 118.1𝑁0.229 Vs = 109.5𝑁0.277 

 

According to table 5.2, the results of correlation models between Excel and Curve 

Fitting Tool are different for the same database. In order to compare the prediction 

performance between linear curve fitting and nonlinear curve fitting, the correlation 

models by using linear curve fitting and the models by using nonlinear curve fitting 

are plotted in the following. 

 
Figure 5.4 Correlation models for linear curve fitting and nonlinear curve fitting based 

on database of SaeTeng 
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Figure 5.5 Correlation models for linear curve fitting and nonlinear curve fitting based 

on database of Pun and Chao 

 

 

 
Figure 5.6 Correlation models for linear curve fitting and nonlinear curve fitting based 

on database of Kuan WK  
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Figure 5.7 Correlation models for linear curve fitting and nonlinear curve fitting based 

on combined database  

 

According to figure 5.4, 5.5, 5.6 and 5.7, the correlation models of nonlinear curve 

fitting provide higher value of shear wave velocity compared with linear curve fitting 

when SPT-N is large, as shown in figures 5.4 to 5.7. For large SPT-N values, the 

measurements of shear wave velocity are generally larger than the predictions of 

correlation model. Therefore, correlation models established by Matlab can reduce the 

difference for the case of large shear wave velocity. It indicates Matlab correlation 

models have higher prediction performance for when SPT-N value is large, but it 

cannot be identified which method provides better prediction performance when SPT-

N is small. 

In order to evaluate the prediction performance between those models, root mean 

square error (RMSE) is used to identify and the calculation equation is shown in 5.5. 
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Table 5.3 Comparison of RMSE between linear curve fitting and nonlinear curve 

fitting 

Validation Database 
RMSE 

Linear curve fitting Nonlinear curve fitting  

2009 67.94 65.72 

2010 30.17 29.96 

2011 53.44 52.63 

combined 61.94 60.08 

 

Based on the table 5.3, the correlation models computed from Curve Fitting Tool is 

better than Excel. Therefore, Matlab software was applied in this study in order to 

obtain the better correlation models. 

GP model based on the combination of SaeTeng (2009), Pun and Chao (2010) and 

Kuan Wai Kin (2011):  

Vs = 0.04691N −
3421

N+15.11
− 0.02125N2 + 0.0004948N3 +

4.383

N−0.6444
+ 341.6  (5.27) 

where Vs = shear wave velocity, m/s; N = standard penetration test N value 

For GP model, the highest prediction performance is provided compare with linear 

curve fitting and nonlinear curve fitting, the corresponding evaluation of this model is 

shown in table 5.4. 

Table 5.4 the RMSE of GP model based on the corresponding Validation Database 

Validation Database 
RMSE 

GP 

2009 59.89 

2010 33.71 

2011 60.04 

combined 54.60 

 

Based on table 5.4, GP model provided the best prediction performance for 

SaeTeng (2009), KuanWai Kin (2011) and combined database. On the other hand, it 

provided the worst prediction performance for Pun and Chao (2010). Although the 

perfect correlation model cannot be established, however, the prediction performance 

is successfully improved after genetic programming was applied. 
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CHAPTER 6 DATA ANALYSIS 

6.1Introduction 

In this chapter, there are total 28 correlation models of shear wave velocity and 

mainly separate into 4 sections to introduce. In section 6.2, the correlation models of 

shear wave velocity with SPT-N value are introduced. The correlation models of shear 

wave velocity with SPT-N and vertical effective stress are introduced in section 6.3.In 

section 6.4, the cone resistance is combined with SPT-N to establish correlation model 

of shear wave velocity, however, cone resistance commonly contained large variation 

of soil behavior, the appropriate calculation method of the average cone resistance is 

hard to identify. Therefore, four different calculation methods of average cone 

resistance were applied in this study in order to identify the best calculation based on 

the prediction performance of corresponding models. In section 6.5, SPT-N value, 

vertical effective stress and cone resistance are combined to establish the correlation 

models of shear wave velocity. Finally, the prediction performance of the correlation 

models are summarized and compared for each specific soil layer in order to identify 

the best correlation models in section 6.6. 

In order to establish the new correlation models of shear wave velocity of Macau 

soil, the databases of LRT-C250 project were selected in this study and shown in 

Appendix A. After the outliers are eliminated, There are total 66 datasets (Marine 

Deposit: 32, Alluvium: 34) were selected. 

Root mean square error (RMSE) is applied to identify the prediction performance 

based on the validation database of marine deposit, alluvium and the combination of 

these two soil type. Moreover, the best correlation model which obtains from either 

Curve Fitting Tool or “NonLinearModel.fit” function is compared with the GP model 



67 

 

by using predicted Vs verses measured Vs plot, the higher percentage with Region 3 

and 4 indicates higher chance to obtain reasonable prediction.  

 

6.2 Correlation Model of Shear Wave Velocity with SPT-N 

6.2.1 Models 

In this section, Curve Fitting Tool and Genetic Programming (GPTIPS1.0) were 

applied to establish the correlation models of shear wave velocity with SPT-N. 

SPT-N model: 

(Marine Deposit)                          V𝑠 = 155.1N0.0525                                            (6.1) 

(Alluvium)                                   V𝑠 = 150.2𝑁0.2259                                            (6.2) 

(All soil)                                      V𝑠 = 136.2𝑁0.2487                                             (6.3) 

GP SPT-N model: 

(All soil)                    Vs = 5.199N −
5.133N

N−11.65
+ 0.169𝑁2 + 151.3                      (6.4) 

where Vs = shear wave velocity, m/s; N = standard penetration test N value 

For equation 6.1, the lower curvature performance can be obtained for equation 6.1 

because the power number of SPT-N is significant smaller compare with equation 6.2 

and 6.3. Moreover, equation 6.4 (GP model) performed more complex format of 

model than power law functions. In order to compare these four different models, 

there are plotted in the same figure as shown in figure 6.1.  
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Figure 6.1 Correlation models of Shear Wave Velocity and SPT-N by Curve Fitting 

Tool and genetic programming 

 

6.2.2 Model Evaluation 
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value of SPT-N is only up to 26, so that the genetic programming generate high shear 

wave velocity when  the value of SPT-N larger the range of existing database.  

For the prediction evaluation, equation 6.1 and 6.2 are not included in the 

comparison with others, it is because the calibration data set of these two models only 

based on marine deposit and alluvium, respectively. Therefore, equation 6.3 and 6.4 

are compared by using root mean square error (RMSE) which respect to marine 

deposit, alluvium and all soil accordingly, the corresponding result are provided in 

table 6.1.  

Table 6.1 Result of RMSE for Equation 6.3 and 6.4  

Validation data set Number of dataset 
SPT-N model GP SPT-N model 

Equation 6.3 Equation 6.4 

Marine Deposit 32 42.996 39.848 

Alluvium 34 62.429 52.289 

All soil 66 53.889 46.673 

 

According to table 6.1, the GP model provided better predication performance 

compare with equation 6.3 respect to those 3 different soil types because the result of 

RMSE of equation 6.4 (GP SPT-N model) is less than equation 6.3. In order to 

investigate the prediction performance statistically, the figures of predicted Vs versus 

measured Vs are plotted based on SPT-N model (equation 6.3) and the corresponding 

GP model (equation 6.4). 
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6.2.3 Result 

 

Figure 6.2 predicted Vs verses measured Vs for equation 6.3 
 

 

Figure 6.3 predicted Vs verses measured Vs for equation 6.4 
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Table 6.2 Distribution of data for equation 6.3  

SPT-N model 
Marine Deposit Alluvium 

Equation 6.3 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 4 12.50  4 11.76  

3 16 50.00  11 32.35  

4 9 28.13  13 38.24  

5 3 9.38  6 17.65  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
62.50  44.12  

Percentage of under-

predicted, % 
37.50  55.88  

Percentage of within 

Region 3 and 4, % 
78.13  70.59  

 

 

Table 6.3 Distribution of data for equation 6.4 

GP SPT-N model 
Marine Deposit Alluvium 

Equation 6.4 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 4 12.50  1 2.94  

3 19 59.38  12 35.29  

4 6 18.75  18 52.94  

5 3 9.38  3 8.82  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
71.88  38.24  

Percentage of under-

predicted, % 
28.13  61.76  

Percentage of within 

Region 3 and 4, % 
78.13  88.24  
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For equation 6.3, the percentage of over-predicted for marine deposit equals to 

62.50%, and 44.12% for alluvium. Therefore, this model is over-predicted to marine 

deposit and under-predicted to alluvium. Moreover, this model has higher chance to 

obtain reasonable prediction for marine deposit than alluvium because the percentage 

of within region 3 and 4 for marine deposit equals to 78.13%, and 70.59% for 

alluvium.  

For equation 6.4, the percentage of over-predicted for marine deposit equals to 

71.88%, and 38.24% for alluvium. Therefore, this model is also over-predicted to 

marine deposit and under-predicted for alluvium. Moreover, this model has higher 

chance to obtain reasonable prediction for alluvium than marine deposit because the 

percentage of within region 3 and 4 equals to 78.13% for marine deposit, and 88.24% 

for alluvium.  

In comparing this 2 equations based on table 6.2 and table 6.3, the result 

represented that equation 6.4 (GP SPT-N model) has higher prediction performance. 

However, the overall prediction performances for these two models are not good 

although a significant improvement can be obtained for alluvium after the genetic 

programming applied. Therefore, the additional representative soil parameters are 

necessary to take into consideration in order to improve the prediction performance 

for marine deposit and alluvium. 

 

6.3 Correlation Model of Shear Wave Velocity with SPT-N and vertical effective 

stress 

Based on prediction performance of correlation model of shear wave velocity with 

SPT-N, the correlation model still cannot apply with confidence. Therefore, the 

dataset of vertical effective stress is applied to combine with the database of SPT-N to 
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establish the correlation models of shear wave velocity in order to improve the 

prediction performance. 

 

6.3.1 Models 

After the database of SPT-N and vertical effective were combined, Curve Fitting 

Tool and Genetic Programming (GPTIPS1.0) were applied to establish the correlation 

models of shear wave velocity with SPT-N and vertical effective stress. 

SPT-N,𝜎′
𝑣 model 

    Marine Deposit                     

V𝑠 = 457.4(𝑁)0.1226(𝜎′
𝑣)−0.2543                         (6.5) 

Alluvium 

V𝑠 = 13.69(𝑁)0.1276(𝜎′
𝑣)0.523                            (6.6) 

All soil 

V𝑠 = 43.41(𝑁)0.176(𝜎′
𝑣)0.2639                            (6.7) 

GP SPT-N,𝜎′
𝑣 model: 

All soil 

V𝑠 = 30.83𝑁 −
4.019𝜎′

𝑣

𝑁2+𝑁−𝜎′
𝑣

+
2336𝑁−8008

3𝑁−𝜎′
𝑣

+ 52.59            (6.8) 

where Vs = shear wave velocity, m/s; N = standard penetration test N value; 𝜎′
𝑣 =

 vertical effective stress, kPa 

 

6.3.2 Model Evaluation 

In comparing between equations 6.5 to 6.7, the difference of equation 6.5 is 

obtained by comparing with equation 6.6 and 6.7.A negative power number for the 

vertical effective stress parameter and the apparent large regression coefficient are 

obtained from equation 6.5. It is caused by the unreliable measurement and the soil 
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complexity for marine deposit, as described in section 6.2.2. In order to identify the 

prediction performance for each correlation models, coefficient of determination (R2) 

is selected to identify the prediction performance for corresponding validation data set, 

as shown in table 6.4. 

Table 6.4 Result of R2 for equation 6.5, 6.6, 6.7 and 6.8 

Model Equation 
Calibration data 

set 

Validation data 

set 

Number 

of data 

point 

R2 

SPT-N,𝜎′
𝑣 

6.5 Marine Deposit Marine Deposit 32 0.120 

6.6 Alluvium Alluvium 34 0.358 

6.7 All soil All soil 66 0.464 

GP SPT-N,𝜎′
𝑣 6.8 All soil All soil 66 0.651 

 

According to table 6.4, equation 6.5 provided a poor prediction performance of 

shear wave velocity because the lowest value of R2 is obtained compare with other 

models. On the other hand, equation 6.8 provided the best prediction performance 

after the Genetic Programming applied. 

In order to identify the improvement of GP model, equation 6.7 and equation 6.8 

are selected in order to evaluate the prediction performance for each soil type by using 

RMSE, as shown in table 6.7. 

Table 6.5 Result of RMSE for equation 6.7 and 6.8 

Validation data 

set 

Number of 

data point 

SPT-N,𝜎′
𝑣 model GP SPT-N,𝜎′

𝑣 model 

Equation 6.7 Equation 6.8 

Marine Deposit 32 45.81 36.24 

Alluvium 34 58.37 47.58 

All soil 66 52.66 42.46 

 

According to table 6.5, equation 6.8 (GP SPT-N,𝜎′
𝑣 model) provides lower value of 

RMSE than equation 6.7 for those 3 different soil types. Therefore, the better 

predication performance is provided by equation 6.7 (GP SPT-N, 𝜎′
𝑣 model) compare 

with other 3 SPT-N, 𝜎′
𝑣 models. 
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In order to investigate the prediction performance statistically, the figures of 

predicted Vs versus measured Vs were plotted based on the SPT-N, 𝜎′
𝑣  model 

(equation 6.7) and the GP SPT-N, 𝜎′
𝑣 model (equation 6.8). 

 

6.3.3 Result 

 

Figure 6.4 predicted Vs verses measured Vs for equation 6.7 

 

 

Figure 6.5 predicted Vs verses measured Vs for equation 6.8 
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Table 6.6 Distribution of data for equation 6.7  

SPT-N,𝜎′
𝑣 model 

Marine Deposit Alluvium 
Equation 6.7 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 5 15.63  5 14.71  

3 16 50.00  10 29.41  

4 7 21.88  15 44.12  

5 4 12.50  4 11.76  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
65.63  44.12  

Percentage of under-

predicted, % 
34.38  55.88  

Percentage of within 

Region 3 and 4, % 
71.88  73.53  

 

 

Table 6.7 Distribution of data for equation 6.8 

GP SPT-N,𝜎′
𝑣 model 

Marine Deposit Alluvium 
Equation 6.8 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 4 12.50  2 5.88  

3 18 56.25  13 38.24  

4 9 28.13  15 44.12  

5 1 3.13  4 11.76  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
68.75  44.12  

Percentage of under-

predicted, % 
31.25  55.88  

Percentage of within 

Region 3 and 4, % 
84.38  82.35  
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For equation 6.7, the percentage of over-predicted for marine deposit equals to 

65.63%, and 44.12% for alluvium. Therefore, this model is over-predicted for marine 

deposit and under-predicted for alluvium. Moreover, this model provided higher 

chance to obtain reasonable prediction for alluvium than marine deposit because the 

percentage of within region 3 and 4 for marine deposit equals to 71.88%, and 73.53% 

for alluvium. 

For equation 6.8, the percentage of over-predicted for marine deposit equals to 

68.75%, and 44.12% for alluvium. Therefore, this model is also over-predicted for 

marine deposit and under-predicted for alluvium. Moreover, this model provided 

higher chance to obtain reasonable prediction for marine deposit than alluvium 

because the percentage of within region 3 and 4 for marine deposit equals to 84.38%, 

and 82.35% for alluvium.  

In comparing this 2 models based on table 6.6 and table 6.7, the result represented 

that equation 6.8 (GP model) provided higher prediction performance. In order to 

identify the improvement after the database of vertical effective stress combined with 

SPT-N to establish shear wave velocity, table 6.2, 6.3, 6.6 and 6.7 are taken into 

comparison. For equation 6.3 and 6.7, the effect of vertical effective stress cause bad 

prediction performance for marine deposit. For equation 6.4 and 6.8, the vertical 

effective stress cause bad prediction performance for alluvium. The prediction 

improvement is not provided significantly after the vertical effective stress is 

combined. In this case, the database of cone resistance is selected to compare the 

prediction improvement with vertical effective stress.  

 

6.4 Correlation model of Shear Wave Velocity with SPT-N and cone resistance 

Based on the section 6.3, the prediction performance is improved but no significant 

after the database of vertical effective stress combined with SPT-N to establish the 
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new correlation models. In this section, the database of cone resistance is applied. It is 

used to combine with the database of SPT-N to establish the correlation models of 

shear wave velocity with SPT-N and cone resistance. 

However, some significant variations were commonly obtained in the measurement 

of cone resistance, as mentioned in Chapter 2.5. Therefore, 4 different calculation 

methods of the equivalent average of cone resistance are introduced in below. 

Method 1: the mean value of cone resistance between current depth and 1 m below; 

Method 2: the mean value of cone resistance between 1 m above and 1 m below of 

current depth; 

Method 3: the mean value of cone resistance between current depth and 0.5 m 

below; 

Method 4: refer to Bustamante and Gianeselli method (Chapter 2.5.2) based on the 

pile diameter is equal to standard diameter of cone (3.57 cm). 

 

6.4.1 Models 

According to Chapter 5.3, the cone resistance can also form as a power-law 

regression to establish shear wave velocity instead of SPT-N. The corresponding 

correlation models based on different calculation method of cone resistance are shown 

in following. 

q𝑐 models: 

Method 1: 

                                                    V𝑠 = 49.19𝑞𝑐
0.2053                                              (6.9) 

Method 2: 

                                                    V𝑠 = 39.4𝑞𝑐
0.2352                                              (6.10) 
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   Method 3: 

                                                  V𝑠 = 51.42𝑞𝑐
0.2003                                              (6.11) 

     Method 4: 

                                                 V𝑠 = 54.63𝑞𝑐
0.1956                                               (6.12) 

where Vs = shear wave velocity, m/s; q𝑐 = cone resistance, kPa 

After the dataset of SPT-N and cone resistance are combined, Curve Fitting tool 

and Genetic Programming (GPTIPS1.0) are applied to establish the correlation models 

of shear wave velocity with SPT-N and cone resistance. 

SPT-N,q𝑐model: 

Method 1: 

V𝑠 = 53.81(N)0.2036(q𝑐)0.1419                                      (6.13) 

Method 2: 

V𝑠 = 41.87(N)0.207(q𝑐)0.1755                                       (6.14) 

Method 3: 

V𝑠 = 38.35(N)0.2211(q𝑐)0.1866                                     (6.15) 

Method 4: 

V𝑠 = 41.48(N)0.2199(q𝑐)0.1792                                      (6.16) 

 

GP SPT-N,q𝑐model: 

Method 1: 

V𝑠 = 5.92N −
3509(0.1389N2+N+q𝑐+8.373)

2(𝑁+q𝑐)
+

5.92𝑁2

𝑁+7.535
+ 1931             (6.17) 

Method 2: 

V𝑠 = 8.313𝑁 +
839.9q𝑐−4958

4𝑁+q𝑐+7.467
−

28.41

𝑁2 − 653.6                         (6.18) 

Method 3: 

                V𝑠 = 0.0226q𝑐 −
1.202q𝑐

2

100000𝑁
+ 0.003765𝑁q𝑐 + 148.3                    (6.19) 
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Method 4: 

 V𝑠 = 0.03465q𝑐 −
1.507q𝑐

2

100000𝑁
+ 𝑁(0.004133q𝑐 − 0.00003013) + 139.8       (6.20) 

The correlation models of shear wave velocity with cone resistance are expressed in 

equation 6.9 to 6.12. In order to compare the shape of the curve between these four 

different models, there were plotted in figure 6.6. 

 

Figure 6.6 Correlation models of Shear Wave Velocity and cone resistance using 

Curve Fitting Tool 

 

6.4.2 Model Evaluation 

According to figure 6.6, the larger value of shear wave velocity is established by 

equation 6.10 compare with the other 3 correlation models, and the lower value of 

shear wave velocity is established by equation 6.9.  

The database of cone resistance was calculated by 4 different methods. Each 

method is also possible to calculate outlier, as shown in figure 6.6. However, the 

outlier cannot be identified directly because the prediction influence is not significant 
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as SPT-N database. Therefore, the consideration of outlier is not applied in database 

of cone resistance.  

The prediction performance is hard to compare directly between these 4 different 

methods because the correlation models are similar. Therefore, coefficient of 

determination (R2) is applied to identify which calculation of cone resistance can 

provide the best prediction performance. After that, these 4 different databases of cone 

resistance are combined with SPT-N to establish shear wave velocity. Finally, Genetic 

Programming is applied to establish the shear wave velocity in order to obtain the 

improvement of the correlation models. The comparisons between different formats of 

modeling with different calculation method of cone resistance are shown in table 6.8. 

 

Table 6.8 Result of R2 for equation q𝑐 Models, SPT-N,q𝑐 Models and GP SPT-N,q𝑐 

Models 

Model Equation Calibration data set Validation data set R2 

q𝑐 

6.9 All soil (Method 1) All soil 0.2974 

6.10 All soil (Method 2) All soil 0.276 

6.11 All soil (Method 3) All soil 0.2002 

6.12 All soil (Method 4) All soil 0.2263 

SPT-N,q𝑐 Model 

6.13 All soil (Method 1) All soil 0.5548 

6.14 All soil (Method 2) All soil 0.5704 

6.15 All soil (Method 3) All soil 0.583 

6.16 All soil (Method 4) All soil 0.5812 

GP SPT-N,q𝑐 

6.17 All soil (Method 1) All soil 0.630 

6.18 All soil (Method 2) All soil 0.606 

6.19 All soil (Method 3) All soil 0.641 

6.20 All soil (Method 4) All soil 0.628 

 

In comparing between q𝑐 models, the highest value of R2 is provided by equation 

6.9. Therefore, this correlation model provided based on the database of cone 

resistance is calculated by method 1. On the other hand, equation 6.11 provided the 

lowest prediction performance because the lowest value of R2 is provided based on the 

database of cone resistance was calculated by method 3. 
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In comparing between SPT-N,q𝑐 models, the highest value of R2 is provided by 

equation 6.15. Therefore, this correlation model provided the highest prediction 

performance based on the database of cone resistance was calculated by method 3. On 

the other hand, the lowest prediction performance is provided by equation 6.13 

because the lowest R2 is provided based on the cone resistance was calculated by 

method 1. 

In comparing between GP SPT-N,q𝑐 models, the highest value of R2 is provided by 

equation 6.19. Therefore, this correlation model provided the highest prediction 

performance based on the cone resistance was calculated by method 3. On the other 

hand, the lowest prediction performance is provided by equation 6.18 because the 

lowest R2 is provided based on the cone resistance was calculated by method 2. 

In comparing between the overall models in table 6.8, the prediction performance is 

successfully improved after the genetic programming was applied because the highest 

value of R2 is provided by equation 6.19 (GP SPT-N, q𝑐 model). Moreover, the 

database of cone resistance was calculated by method 3 the database is suitable to 

combined with the database of SPT-N value to establish the shear wave velocity based 

on it commonly performed the better prediction performance of shear wave velocity. 

In order to identify the improvement of GP model, equation 6.15 and equation 6.19 

are selected to compare the prediction performance for each soil type by using RMSE, 

as shown in table 6.9. 

 

Table 6.9 Result of RMSE for Equation 6.15 and 6.19  

Validation data set Number of dataset 
SPT-N,q𝑐 Model GP SPT-N,q𝑐 Model 

Equation 6.15 Equation 6.19 

Marine Deposit 32 40.402 33.197 

Alluvium 34 51.481 51.938 

All soil 66 46.440 43.863 
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According to table 6.9, the RMSE of equation 6.19 (GP SPT-N,q𝑐 model) is less 

than equation 6.15 (SPT-N,q𝑐  Model) for marine deposit and all soil, but not for 

alluvium. Therefore, the better predication performance is provided by equation 6.19 

(GP SPT-N, q𝑐  Model) for marine deposit and all soil, but not for alluvium. In 

comparing the overall prediction performances for equation 6.15 and 6.19, cone 

resistance is suitable applied with SPT-N value to form as power-law regression 

model to establish shear wave velocity. 

On the other hand, the better prediction performance is provided by equation 6.15 

(SPT-N, q𝑐  model) compare with equation 6.7 (SPT-N, 𝜎′
𝑣  model) because the 

corresponding RMSE of equation 6.7 is larger than equation 6.15. It implies SPT-N 

contain higher correlation relationship with cone resistance rather than vertical 

effective stress. 

In order to investigate the prediction performance statistically, predicted Vs versus 

measured Vs is plotted based on the SPT-N, q𝑐  Model (equation 6.15) and the 

corresponding GP SPT-N,q𝑐 model (equation 6.19). 
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6.4.3 Result 

 

Figure 6.7 predicted Vs verses measured Vs for equation 6.15 
 

 
Figure 6.8 predicted Vs verses measured Vs for equation 6.19 
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Table 6.10 Distribution of data for equation 6.15  

SPT-N,q𝑐 Model 
Marine Deposit Alluvium 

Equation 6.15 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 6 18.75  2 5.88  

3 9 28.13  14 41.18  

4 15 46.88  16 47.06  

5 2 6.25  2 5.88  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
46.88  47.06  

Percentage of under-

predicted, % 
53.13  52.94  

Percentage of within 

Region 3 and 4, % 
75.00  88.24  

 

 

Table 6.11 Distribution of data for equation 6.19 

GP SPT-N,q𝑐 Model 
Marine Deposit Alluvium 

Equation 6.19 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 2 6.25  2 5.88  

3 22 68.75  13 38.24  

4 7 21.88  15 44.12  

5 1 3.13  4 11.76  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
75.00  44.12  

Percentage of under-

predicted, % 
25.00  55.88  

Percentage of within 

Region 3 and 4, % 
90.63  82.35  
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For equation 6.15, the percentage of over-predicted for marine deposit equals to 

46.88%, and 47.06% for alluvium. Therefore, this model is over-predicted for 

alluvium and under-predicted for marine. Moreover, this model provided higher 

chance to obtain reasonable prediction for alluvium than marine deposit because the 

percentage of within region 3 and 4 equals to 75.00% for marine deposit, and 88.24% 

for alluvium.  

For equation 6.19, the percentage of over-predicted for marine deposit equals to 

75.00%, and 44.12% for alluvium. Therefore, this model is over-predicted for marine 

deposit and under-predicted for alluvium. Moreover, this model provided higher 

chance to obtain reasonable prediction for marine deposit than alluvium because the 

percentage of within region 3 and 4 equals to 90.63%for marine deposit, and 82.35% 

for alluvium. 

To compare this 2 equations based on table 6.10 and table 6.11, the result indicate 

that equation 6.19 (GP model) has higher prediction performance for marine deposit 

but weaker performance for alluvium by compare with equation 6.15. For all soil 

points of view, improvement of prediction is provided by equation 6.19 based on 

higher percentage are provided to establish the reasonable result of shear wave 

velocity compare with equation 6.15.  

The effect of vertical effective stress and cone resistance are identified based on 

comparison between table 6.6, 6.7, 6.10 and 6.11. In comparing between table 6.6 and 

6.10, equation 6.15 provided improvement of prediction performance for marine 

deposit and alluvium based on the power law functions. For table 6.7 and 6.11, 

equation 6.19 provided improvement of prediction performance for marine deposit 

only based on the GP model. Therefore, cone resistances provide higher correlation 

relationship between SPT-N and shear wave velocity than vertical effective stress. 
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6.5 Correlation model of Shear Wave Velocity with SPT-N, vertical effective 

stress and cone resistance 

6.5.1 Models 

Based on the previous section, it mentions that the cone resistance provided the 

improvement for the prediction of shear wave velocity. Since both vertical effective 

stress and cone resistance available to provide improvement for prediction of shear 

wave velocity, database of these two soil parameters were combined at the same time 

with SPT-N value to establish new correlation models. “NonLinearModel.fit” function 

and Genetic Programming (GPTIPS1.0) were applied in this study. Those 4 

calculation methods of cone resistance are evaluate again based on the new format of 

correlation models. 

 

SPT-N,σ′
𝑣, q𝑐 Model: 

Method 1: 

V𝑠 = 40.744(N)0.184(σ′
𝑣)0.074(q𝑐)0.136                         (6.21) 

Method 2: 

V𝑠 = 31.357(N)0.186(σ′
𝑣)0.078(q𝑐)0.16855                      (6.22) 

Method 3: 

V𝑠 = 23.902(N)0.187(σ′
𝑣)0.122(q𝑐)0.122                         (6.23) 

Method 4: 

V𝑠 = 23.413(N)0.17824(σ′
𝑣)0.145(q𝑐)0.172                      (6.24) 

 

GP SPT-N,σ′
𝑣, q𝑐Model : 

Method 1: 

    V𝑠 = 0.007279σ′
𝑣
2

−
0.00652(σ′

𝑣−5.631)
2

𝑁
−

0.0001349σ′
𝑣
4

q𝑐−1.845
+ 140.7       (6.25) 
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Method 2: 

    V𝑠 =
0.06422q𝑐

σ′
𝑣

− 0.06422𝑁(2𝑁 − σ′
𝑣 + 7.314) −

926(𝑁+σ′
𝑣+q𝑐−0.9382)

2q𝑐−𝑁+σ′
𝑣+7.314

+ 644 (6.26) 

    Method 3: 

    V𝑠 = 𝑁 (
3.112q𝑐σ′

𝑣

100000
− 1.094) − 0.00003112(σ′

𝑣 + N2q𝑐) +
3.017

N−10.97
+ 162     (6.27) 

   Method 4: 

    V𝑠 = 0.002148q𝑐 +
5.279𝑁q𝑐σ′

𝑣

100000
−

2.169𝑁(𝑁q𝑐−24.56)(𝑁+q𝑐+20.34)

100000σ′
𝑣

+ 154.5           (6.28) 

 

6.5.2 Model Evaluation 

In order to compare the difference and prediction performance between correlation 

models, coefficient of determination (R2) is applied to identify which calculation of 

cone resistance can provided the best correlation model. After the database of SPT-N, 

vertical effective stress and cone resistance were combined to form as power-law 

correlation functions. Moreover, new correlation models are established after genetic 

programming was applied. The result of R2 for those is compared in table 6.12. 

Table 6.12 Result of R2 for SPT-N,σ′
𝑣, q𝑐 models and GP SPT-N,σ′

𝑣, q𝑐 models 

Model Equation Calibration data set Validation data set R2 

SPT-N,σ′
𝑣, q𝑐 

6.21 All soil (Method 1) All soil 0.557 

6.22 All soil (Method 2) All soil 0.572 

6.23 All soil (Method 3) All soil 0.588 

6.24 All soil (Method 4) All soil 0589 

GP SPT-N,σ′
𝑣,

q𝑐 

6.25 All soil (Method 1) All soil 0.631 

6.26 All soil (Method 2) All soil 0.631 

6.27 All soil (Method 3) All soil 0.741 

6.28 All soil (Method 4) All soil 0.665 

 

In comparing between SPT-N,σ′
𝑣, q𝑐 models, the highest value of R2 is provided 

by equation 6.24. Therefore, this correlation model provided based on the database of 

cone resistance is calculated by method 4. On the other hand, equation 6.21 provided 
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the lowest prediction performance because the lowest value of R2 is provided based on 

the database of cone resistance was calculated by method 1. 

In comparing between GP SPT-N, σ′
𝑣, q𝑐  models, the highest value of R2 is 

provided by equation 6.27.Therefore, this correlation model provided based on the 

database of cone resistance is calculated by method 3. On the other hand, equation 

6.14 provided the lowest prediction performance because the lowest R2 is provided 

based on the database of cone resistance was calculated by method 1. 

Based on the result of R2 from table 6.12, the prediction performance can be 

improved significantly if the correlation model combined with SPT-N, vertical 

effective stress and cone resistance at the same time. Moreover, the highest prediction 

performance after the genetic programming was applied.   

In order to identify the improvement of GP model, equation 6.23 and equation 6.27 

are selected to compare the prediction performance for each soil type by using RMSE, 

as shown in table 6.16. 

 Table 6.13 Result of RMSE for Equation 6.24 and 6.28  

Validation data 

set 

Number of 

dataset 

SPT-N,σ′
𝑣, q𝑐 Model GP SPT-N,σ′

𝑣, q𝑐 Model 

Equation 6.23 Equation 6.27 

Marine Deposit 32 41.11 34.14 

Alluvium 34 50.44 38.72 

All soil 66 46.15 36.57 

 

Based on table 6.13, equation 6.27 (GP SPT-N,σ′
𝑣, q𝑐 model) provided less value 

of RMSE than equation 6.23 (SPT-N,σ′
𝑣, q𝑐  model) respect to those 3 different 

validation data set. Therefore, GP model provided higher predication performance 

compare with the power-law correlation model. 

After vertical effective stress and cone resistance were combined with SPT-N to 

establish shear wave velocity, the prediction performance for corresponding models 

become higher if more reliable soil parameter are combined to form a correlation 
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function. In comparing between the table 6.1, 6.5, 6.8, and 13, the lowest RMSE is 

calculated based on GP SPT-N,σ′
𝑣, q𝑐 model (equation 6.27). Therefore, either the 

more reliable soil parameters applied or Genetic Programming apply, the higher 

prediction performance is also obtained.  

In order to investigate the prediction performance statistically, the figure of 

predicted Vs versus measured Vs is plotted based on the equation 6.23 (SPT-N,σ′
𝑣,

q𝑐 Model) and the equation 6.27 (GP SPT-N,σ′
𝑣, q𝑐 Model). 

 

6.5.3 Result 

 

Figure 6.9 predicted Vs verses measured Vs for equation 6.23 
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Figure 6.10 predicted Vs verses measured Vs for equation 6.27 

 

Table 6.14 Distribution of data for equation 6.23  

SPT-N,σ′
𝑣, q𝑐 Model 

Marine Deposit Alluvium 
Equation 6.23 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 7 21.88  2 5.88  

3 8 25.00  14 41.18  

4 15 46.88  16 47.06  

5 2 6.25  2 5.88  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
46.88  47.06  

Percentage of under-

predicted, % 
53.13  52.94  

Percentage of within 

Region 3 and 4, % 
71.88  88.24  
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Table 6.15 Distribution of data for equation 6.27 

GP SPT-N,σ′
𝑣, q𝑐 Model 

Marine Deposit Alluvium 
Equation 6.27 

Region 
Number of 

data 

Percentage of 

data (%) 

Number of 

data 

Percentage of 

data (%) 

1 0 0.00  0 0.00  

2 4 12.50  1 2.94  

3 19 59.38  14 41.18  

4 6 18.75  17 50.00  

5 3 9.38  2 5.88  

6 0 0.00  0 0.00  

Percentage of over-

predicted, % 
71.88  44.12  

Percentage of under-

predicted, % 
28.13  55.88  

Percentage of within 

Region 3 and 4, % 
78.13  91.18  

 

For equation 6.23, the percentage of over-predicted for marine deposit equals to 

46.88%, and 47.06% for alluvium. Therefore, this model is over-predicted for 

alluvium and under-predicted for marine deposit. Moreover, this model provided 

higher chance to obtain reasonable prediction for alluvium than marine deposit 

because the percentage of within region 3 and 4 for marine deposit equals to 71.88%, 

and 88.24% for alluvium.  

For equation 6.27, the percentage of over-predicted for marine deposit equals to 

71.88%, and 44.12% for alluvium. Therefore, this model is over-predicted for marine 

deposit and under-predicted for alluvium. Moreover, this model provided higher 

chance to obtain reasonable prediction for alluvium than marine deposit because the 

percentage of within region 3 and 4 for marine deposit equals to 78.13%, and 91.18% 

for alluvium. 
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In comparing this 2 equations based on table 6.14 and table 6.15, the highest 

prediction performance is provided by equation 6.27 (GP model) based on higher 

percentage to establish the reasonable result of shear wave velocity is provided.  

To compare the result with overall correlation models, the prediction performance 

is improved based on the additional soil parameters combined to form correlation 

models. However, the highest prediction model may only provide best prediction 

performance for all soil, but it cannot be standardized as the best fit for each specific 

soil layer. 

 

6.6 Summary 

The database of LRT-C250 project is selected to establish the correlation models of 

shear wave velocity in this study. In order to establish various categorizes  of 

correlation models based on this database, curve fitting tool, “NonLinearModel.fit” 

function and genetic programming (GPTIPS1.0) were applied. On the other hand, 

Coefficient of determination (R2), Root Mean Square Error (RMSE) and the plots 

between predicted Vs verses measured Vs were applied to evaluate prediction 

performance of the correlation models. 

There are total 28 correlation models were established and separated into 4 different 

categorizes, which are represented to section 6.2 to 6.5, respectively.  

In section 6.2, the shear wave velocity for marine deposit contains poor relation of 

power law regression with SPT-N. The prediction performance was improved after the 

genetic programming applied, however, this correlation model (equation 6.4) still 

cannot be applied with confidence. It may be caused by the limitation of the database, 

unnatural soil behavior of marine deposit and the influence of other soil parameters. 
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In section 6.3, the database of vertical effective stress was combined with SPT-N to 

establish new correlation model of shear wave velocity. The prediction performances 

were not improved significantly. The vertical effective stress caused bad effect for 

marine deposit based on power-law correlation model (equation 6.7).The prediction 

performances also improved after the genetic programming was applied. 

In section 6.4, the database of cone resistance was combined with SPT-N to 

establish new correlation model of shear wave velocity. Since the database of cone 

resistance contains large variation in field measurement, there are 4 different 

calculation methods provided to calculate the equivalent average cone resistance in 

order to obtain the best correlation model. Based on the result, the database of cone 

resistance calculated by method 3 was commonly provided the best fit correlation 

model. However, Method 3 is not represented the best database for any format of 

correlation model. Therefore, it cannot be standardized which method can provide the 

best correlation model. The result was highly affected by the formation of model, site 

condition, soil classification and reliability of database. Moreover, the prediction 

improvement for combine with cone resistance was significant compare with vertical 

effective stress. 

In section 6.5, vertical effective stress and cone resistance can provide improvement 

of prediction of shear wave velocity. Therefore, the database of these two soil 

parameters are combined with SPT-N at the same time in order to establish new 

correlation model so that the highest prediction performance can be achieved. To 

compare the result with overall correlation models, the prediction performance was 

improved based on the vertical effective stress and cone resistance combined to form 

correlation models.  
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Table 6.16 the result of RMSE of the best correlation models of each section 

Section Model Equation 
RMSE 

Marine Deposit Alluvium All soil 

6.2 
SPT-N 6.3 42.30 62.43 53.89 

GP SPT-N 6.4 39.85 52.29 46.67 

6.3 
SPT-N,𝜎′

𝑣 6.7 45.81 58.37 52.66 

GP SPT-N,𝜎′
𝑣 6.8 36.24 47.58 42.46 

6.4 
SPT-N,q𝑐 6.15 40.40 51.48 46.44 

GP SPT-N,q𝑐 6.19 31.12 51.94 43.86 

6.5 
SPT-N,σ′

𝑣, q𝑐 6.23 41.11 50.44 46.15 

GP SPT-N,σ′
𝑣, q𝑐 6.27 34.58 47.35 41.65 

 

According to table 6.16, GP SPT-N,q𝑐 model have highest prediction performance 

for marine deposit because the value of RMSE is lowest for Marine Deposit, on the 

other hand, the highest prediction performance for alluvium and all soil were 

established by GP SPT-N,σ′
𝑣, q𝑐  Model. As result, one single correlation model 

provides the best fit of correlation model for all soil, but it cannot provide the best 

fitting for one specific soil layer. Therefore, one single correlation model might not 

apply with confidence in every specific soil type. 
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CHAPTER 7     CONCLUSION 

7.1 Conclusion and Findings 

In this study, nonlinear curve fitting and genetic programming were applied to 

establish the correlation models of shear wave velocity with SPT-N, vertical effective 

stress and cone resistance.  

The new correlation models were established in this study based on the LRT C-250 

project. After the outliers were eliminated, the newest existing database in this study 

contains total 66 data points (Marine Deposit: 32, Alluvium: 34). In order to compare 

the prediction performance for each models, Coefficient of determination (R2), root 

mean square error (RMSE) and the plot of predicted versus measured were applied to 

identify the which model provide best fit function and evaluate the corresponding 

prediction performance. 

Matlab software was applied in this study instead of using Excel software. The 

reason is power-law regression is classified as nonlinear curve function, since Excel is 

using linear curve fitting method to establish the nonlinear correlation model, that 

means the power-law function need to transform to linear function so that it can be 

solved by using linear curve fitting. Based on the model comparison between linear 

curve fitting and nonlinear curve fitting, the higher value of shear wave velocity was 

generally performed by nonlinear curve fitting than linear curve fitting when SPT-N is 

large, that means Matlab correlation model have higher prediction performance when 

SPT-N value is large, however, it may not be identified which method provided better 

prediction performance when SPT-N is small. Therefore, the result of RMSE is 

applied to evaluate the correlation models between linear curve fitting and nonlinear 

curve fitting. After that, the lowest value of RMSE was performed by nonlinear curve 

fitting model so that Matlab software was selected to apply in this study. 
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After each correlation models with different format or different soil parameter were 

established in this study, there are some finding can be observed: 

 The improvement of prediction performance can be observed after the reliable 

soil parameters combined with SPT-N to establish new correlation models.  

 To comparing between vertical effective stress and cone resistance, the higher 

prediction performance is provided by cone resistance rather than vertical 

effective stress for combined with SPT-N to establish shear wave velocity. 

 GP SPT-N, qc Model indicated highest prediction performance for Marine 

Deposit because the value of RMSE is lowest for Marine Deposit. 

 GP SPT-N,σ′
𝑣, q𝑐  model provided the highest prediction performance for 

alluvium and all soil, however, it may not provide the best prediction for 

marine deposit. It indicates one single correlation model cannot apply to 

practice with confidence for each specific soil type. 

7.2 Recommendation and Future work 

The prediction performance was successfully improved after genetic programming 

applied to establish shear wave velocity. At the same time, the complexity of the 

correlation models also increased relatively and the format of correlation models 

cannot be assigned directly as simple power law function. Since this type of model is 

not based on any theoretical relationship, it is highly depend on the dataset is reliable 

or not. Therefore, the precision of measurement is necessary to be guarantee and make 

the correlation model more convincing by providing the sufficient number of reliable 

database. In actual situation, there are contain many uncertainly for each soil types, 66 

data points may not provide representative and applicable correlation model in Macau. 

The additional field testing is required in order to gain more dataset so that the 

correlation models can keep updating and become more applicable in Macau. 



98 

 

REFERENCES 

Amoroso, S. (2013), “Prediction of the shear wave velocity Vs from CPT and DMT”, 

In: Cui Y J, eds, Proceedings of the 5th International Young Geotechnical Engineers’ 

Conference-5th iYGEC 2013. 

 

Anbazhagan, P., Kumar, A., Sitharam, T. G. (2012), “Seismic Site Classification and 

Correlation between Standard Penetration Test N Value and Shear Wave Velocity for 

Lucknow City”, Indo-Gangetic Basin, Pure and Applied Geophysics. 

 

Andrus, R. D., Hayati, H., Mohanan, N. P. (2009), “Correlation Liquefaction 

Resistance for Aged Sands Using Measured to Estimated Velocity Ratio”, Journal of 

Geotechnical and Geoenvironmental Engineering, Vol. 135(6), pp. 735-744. 

 

Barkhordari, K., Nayeri, G. D., Nayeri, D. D. (2013), “A New Statistical Correlation 

between Shear Wave Velocity and Penetration Resistance of Soils Using Genetic 

Programming”, Electronic Journal of Geotechnical Engineering, Vol.18, pp. 2071-

2078. 

 

Brandenberg, S. J., Bellana, N., Shantz, T. (2010), “Shear Wave Velocity as Function 

of Standard Penetration Test Resistance and Vertical Effective Stress at California 

Bridge Sites”, Soil Dynamics and Earthquake Engineering, Vol.30, pp.1026-1035. 

 

Chao, S.C., (2010). Investigation of Shear Wave Velocity around an Excavation-

Correlation with Void Ratio and Effective Stress. Final Year Report, University of 

Macau. 



99 

 

Civil Engineering Consultants Co. Ltd. (2010). Soil Investigation Report S-CPT, 

NGAI SHUN ENGINEERING CO. LTD 

 

Holzer, T. L., Bennett, M. J., Noce, T. E., Padovani, A. C., Tinsley III, J. C. (2005), 

“Shear Wave Velocity of Surficial Geologic Sediments: Statistical Distributions and 

Depth Dependence”, Earthquake Spectra, Vol. 21(1), pp. 61-77. 

 

Jafari, M. K., Shafiee, A., Razmkhah, A. (2002), “Dynamic Properties of Fine Grained 

Soils in South of Tehran”, Journal of Seismological Earthquake Engineering, Vol. 4, 

pp. 25-35. 

 

Kuan, W.K. (2011), Correlation between shear wave velocity with penetration tests, 

Finial Year Report, University of Macau, Macau. 

 

Kulhawy, F. H., Orchant, C. J., Trautmann, C. H. (1988), Reliability-based foundation 

design for transmission line structures: critical evaluation of in situ test methods, 

Electric Power Research Institute, Palo Alto, California. 

 

Lunne, T., Robertson, P. K., Powell, J. J. M. (1997), Cone Penetration Testing in 

Geotechnical Practice, BLAACKIE ACADEMIC & PROFESSIONAL, pp.153 

 

Marto, A., Soon, T. C., Kasim, F. (2013), “A Correlation of Shear Wave Velocity and 

Standard Penetration Resistance”, Electronic Journal of Geotechnical Engineering, 

Vol.13, pp. 463-471. 

 



100 

 

Phoon, K. K. (2008), Reliability-Based Design in Geotechnical Engineering 

Computations and Applications, London and New York. 

 

Phoon, K. K., Kulhawy, F. H. (1999)a, “Characterization of Geotechnical variability”, 

Canadian Geotechnical Journal, pp.612-624. 

 

Phoon, K. K., Kulhawy, F. H. (1999)b, “Evaluation of Geotechnical Property 

variability”, Canadian Geotechnical Journal, pp.625-639. 

 

Pun, H. K. (2010). Investigation of Shear Wave Velocity around an Excavation-

Correlation with SPT-N value. Final Year Report, University of Macau. 

 

Sae, T. (2009). In-situ shear wave measurement and ground response analysis for 

developing site-dependent response spectra in Macau, M.S. thesis, University of 

Macau, pp.35-80. 

 

Searson, D., (2009). GPTIPS-Genetic Programming & Symbolic Regression for 

MATLAB User Guide. 

 

Sykora, D. W., Koester, J. P. (1988), “Review of existing correlations between shear 

wave velocity or shear modulus and standard penetration resistance in soils”, In: 

Proceedings of the earthquake engineering and soil dynamics II conference, Park City, 

UT, pp. 389-404.  



101 

 

APPENDIX A. Existing Database of LRT-C250 

Borehole Soil Type depth(m) SPT-N value 
Shear wave velocity (m/s) 

down-hole S-CPT 

DH1 

Marine Deposit 4 2 137.08 151.00 

Marine Deposit 6 1 118.41 113.00 

Marine Deposit 8 2 123.49 121.00 

Marine Deposit 10 3 164.79 159.00 

Marine Deposit 12 3 185.28 187.00 

DH2 

Marine Deposit 4 1 157.55 158.00 

Marine Deposit 6 1 153.68 131.00 

Marine Deposit 8 1 156.51 146.00 

Alluvium 10 2 213.45 201.00 

Alluvium 12 3 217.41 211.00 

Alluvium 14 9 276.65 338.00 

Alluvium 16 11 338.89 333.00 

Alluvium 18 20 334.00 397.00 

DH3 

Marine Deposit 5 2 220.74 249.00 

Marine Deposit 7 3 158.78 139.00 

Alluvium 9 4 181.29 136.00 

Alluvium 11 8 230.97 216.00 

Alluvium 13 10 253.57 211.00 

Alluvium 15 11 321.51 338.00 

Alluvium 17 26 320.28 333.00 

Alluvium 19 15 322.92 397.00 

DH4 

Marine Deposit 5  14  108.93  143.60  

Marine Deposit 7  57  131.73  153.20  

Marine Deposit 9 8 139.85 127.00 

Marine Deposit 11 6 165.59 171.30 

Marine Deposit 13  39  122.18  157.60  

Marine Deposit 15 10 193.43 190.30 

Alluvium 17 9 254.44 228.40 

Alluvium 19 10 168.60 188.50 

DH5 

Marine Deposit 5 2 199.91 230.00 

Marine Deposit 7 3 212.57 159.00 

Marine Deposit 9 4 154.55 139.00 

Alluvium 11 13 149.72 145.00 

Alluvium 13 14 204.86 207.00 

Alluvium 15 16 217.33 232.00 

Alluvium 17 18 257.98 277.00 

Table A.1 database of SPT-N value and shear wave velocity in LRT-C250  
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Borehole Soil Type depth(m) Vertical effective stress, kPa 

DH1 

Marine Deposit 4 65.31 

Marine Deposit 6 85.75 

Marine Deposit 8 105.76 

Marine Deposit 10 125.77 

Marine Deposit 12 145.79 

DH2 

Marine Deposit 4 53.86 

Marine Deposit 6 75.07 

Marine Deposit 8 95.99 

Alluvium 10 106.22 

Alluvium 12 127.94 

Alluvium 14 146.53 

Alluvium 16 166.93 

Alluvium 18 187.12 

DH3 

Marine Deposit 5 58.72 

Marine Deposit 7 78.01 

Alluvium 9 96.87 

Alluvium 11 117.09 

Alluvium 13 137.72 

Alluvium 15 157.65 

Alluvium 17 176.68 

Alluvium 19 196.46 

DH4 

Marine Deposit 5 64.19 

Marine Deposit 7 83.51 

Marine Deposit 9 104.39 

Marine Deposit 11 125.41 

Marine Deposit 13 147.70 

Marine Deposit 15 169.29 

Alluvium 17 191.50 

Alluvium 19 211.87 

DH5 

Marine Deposit 5 63.67 

Marine Deposit 7 82.70 

Marine Deposit 9 102.33 

Alluvium 11 120.79 

Alluvium 13 136.53 

Alluvium 15 144.13 

Alluvium 17 159.23 

Table A.2 database of vertical effective stress in LRT-C250 
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Borehole Soil Type depth(m) 
Average cone resistance kPa 

Method 1 Method 2 Method 3 Method 

DH1 

Marine 

Deposit 
4 2255.19 2047.98 2479.86 1963.10 

Marine 

Deposit 
6 365.53 1935.72 2852.04 412.71 

Marine 

Deposit 
8 378.31 362.05 356.19 358.19 

Marine 

Deposit 
10 419.72 405.29 401.78 405.24 

Marine 

Deposit 
12 1490.83 1001.99 679.44 569.35 

DH2 

Marine 

Deposit 
4 566.15 596.33 747.50 1175.34 

Marine 

Deposit 
6 549.22 526.37 586.49 683.90 

Marine 

Deposit 
8 603.24 553.16 542.53 529.28 

Alluvium 10 1451.60 1573.42 1645.45 1702.07 

Alluvium 12 7209.78 5539.18 5836.55 7348.11 

Alluvium 14 1942.05 2847.93 2302.48 2316.88 

Alluvium 16 1605.42 1650.26 1637.51 1611.00 

Alluvium 18 5383.99 3675.03 2324.21 1724.47 

DH3 

Marine 

Deposit 
5 499.73 795.82 874.46 486.65 

Marine 

Deposit 
7 389.90 383.17 344.43 354.71 

Alluvium 9 549.14 525.56 485.10 485.62 

Alluvium 11 2613.73 2414.89 1932.11 546.34 

Alluvium 13 819.36 1150.53 1096.62 1304.34 

Alluvium 15 2040.05 870.57 1324.05 1056.29 

Alluvium 17 1384.73 1839.44 1678.99 1406.66 

Alluvium 19 2651.22 2422.55 1702.58 1724.21 

DH4 

Marine 

Deposit 
5.00 3303.88 1911.15 745.49 512.07 

Marine 

Deposit 
7.00 860.64 868.34 788.55 897.80 

Marine 

Deposit 
9 664.49 702.42 726.22 730.37 

Marine 

Deposit 
11 2755.90 1739.83 711.66 698.25 

Marine 

Deposit 
13.00 787.29 1302.77 799.86 737.38 

Marine 

Deposit 
15 4429.92 2665.98 1720.30 1092.46 

Alluvium 17 1345.87 1890.29 1352.66 1012.92 
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Alluvium 19 1228.04 1321.65 1316.33 1286.98 

DH5 

Marine 

Deposit 
5 1729.75 2330.61 2599.29 3316.25 

Marine 

Deposit 
7 520.16 980.25 747.57 804.28 

Marine 

Deposit 
9 253.17 324.57 264.76 229.45 

Alluvium 11 319.07 282.65 250.68 266.52 

Alluvium 13 1426.93 1210.36 1482.94 1635.95 

Alluvium 15 1661.15 2121.24 1930.15 1657.31 

Alluvium 17 940.36 1143.36 1093.55 993.01 

Table A.3 Database of average cone resistance for LRT-C250 

 


