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Abstract 

Design and Implementation of an Intelligent Adaptive Controller for Air-fuel Ratio 

Control of an Automotive Engine System 

by 

Xu Yuxiang (D-B1-2896-6) 

Luo Zichong (D-B1-2768-2) 

Cai Quan (D-B0-2337-4) 

 Project Supervisor: Prof. Wong Pak Kin 

Department of Electromechanical Engineering, Faculty of Science and Technology 

Air-fuel ratio (AFR) control is essential for maintaining the best engine 

performance. Practical technique for AFR control is the proportional-integral-derivative 

control in which the process in deriving the best controller parameters is very tedious 

and even a well-tuned controller still cannot guarantee long-term control performance. 

In the literature, various strategies have been developed for AFR control. These include 

the sliding mode control, fuzzy logic control and model predictive control based on 

intelligent techniques. However, all of these aforesaid methods require prior expert 

knowledge of the engine before the controller construction. If no prior knowledge is 

available or the available knowledge is not sufficient, it is practically impossible to 



iv 

construct a reliable controller. To address this issue, this project aims to design an 

intelligent adaptive controller for AFR control, in which no prior knowledge, no 

pre-trained model and no optimizer are required. An intelligent method called fully 

online sequential extreme learning machine (FOS-ELM) is used to construct the 

controller. Simulations have been conducted to verify the designed controller. Moreover, 

most of studies in the literature only perform simulations for controller verification. In 

this project, to evaluate the effectiveness of the designed controller, experiments are 

further set up on a real test engine. The signals of the engine sensors were studied and 

analyzed so that the controller could be successfully implemented on the test engine. 

Both simulation and experimental results demonstrate that the designed intelligent 

adaptive AFR controller is effective for maintaining the AFR to a desired level. In 

addition, the designed controller has been compared with the engine built-in AFR 

controller. The comparison shows that the designed controller can achieve better 

tracking performance than the built-in one, indicating that the designed controller in 

this project is feasible and promising. 
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CHAPTER 1:  INTRODUCTION 

This chapter serves as an introductory overview of the project. The 

background of the project is briefly studied, followed by a literature review 

related to the project scope. The objective of the project is also given at the end 

of this chapter. 

1.1 GENERAL BACKGROUND 

Air pollution is a hot topic in Eastern society. Earlier in spring 2015, air 

pollution problem was bombed in mainland China because a documentary film 

concerning the air pollution in China, named “Under the Dome” (Chai, 2015), 

was posted on the Internet and spread quickly around the whole world. In the 

film, the director investigated the truth behind the air pollution problem in China 

through some factory visits and interviews with environmental experts, 

government officials and business owners. It has been mentioned in the film that, 

apart from industrial emissions, vehicular exhaust emissions are also one of the 

major contributors to the poor air quality in China. This is because there are too 

many on-road vehicles in China, and the using rate of them is especially high 

among all the countries in the world. This fact can be realized from Figures 1.1 

and 1.2, which show the trend for the number of new passenger vehicles sold 
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and the total amount of vehicles in China from 2006 to 2013, and the trend of oil 

production and consumption in China from 2006 to 2015. 

 

Figure 1.1 Number of vehicles in China from 2006 to 20131 

 

 

Figure 1.2 Oil production and consumption in China from 2006 to 20152 

                                                 
1 Data source: China Statistical Yearbook 2014, retrieved from 

http://www.stats.gov.cn/tjsj/ndsj/2014/indexeh.htm, on May 6 2015. 
2 Data source: EIA International Energy Statistics and Short-Term Energy Outlook April 2015, 

retrieved from http://www.eia.gov/forecasts/steo/outlook.cfm#issues2014, on May 6 2015. 
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Figures 1.1 and 1.2 reveal that the trend of increasing number of vehicles is 

still strong, as Chinese have great demand for vehicles due to the huge amount 

of population. It can also be predicted from the data that the number of vehicles 

will be continuously growing for future decades, in China as well as in the world. 

This is not a favorable phenomenon since too many vehicles on the road not 

only give rise to the intractable traffic congestion problems, but also result in 

serious environmental problems as excessive amount of exhaust gases are 

generated from running vehicles. The exhaust gases seriously affect the 

environmental surroundings and harm the residents in the air-polluted area (Kan, 

et al., 2012). For instance, carbon monoxide (CO), a product of incomplete 

combustion, is colorless but poisonous. Inhalation of high concentrations of CO 

can be fatal. Nitrogen oxides (NOx), formed inside the engine under high 

temperature and pressure, can reduce the oxygen transport efficiency if they are 

breathed into lungs. Hydrocarbon (HC), which is odorant and irritant, has been 

considered as a factor that may cause cancer. On the other hand, NOx and HC 

can react under sunlight to form photochemical smog, which is another pollution 

problem to the world (Pulkrabek, 2004). Moreover, carbon dioxide (CO2), which 

is a greenhouse gas produced by vehicle engine, is the cause of global warming. 

Therefore, it has been an essential concern for the government to deal with the 
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problems of vehicular emissions, and increasingly stringent emission standards 

have been established. 

In addition, since fossil fuels are unrenewable resources, they will 

eventually be depleted if they are still being wasted because of using vehicles in 

an unnecessary way. Thus, with the growing consumption of oil, price of fuel 

also maintains at a high position, which may also lead to global economic 

problems. As a result, vehicle manufacturers have been investigating different 

technologies to reduce the amount of emissions and fuel consumption while 

maintaining a high-level of engine performance. 

1.2 SPECIFIC BACKGROUND 

Currently, three-way catalytic converters have been widely adopted to 

reduce the exhaust pollutants from vehicles. They are installed on the exhaust 

pipe of vehicles to reduce HC and CO by oxidization and NOx by reduction 

(Faiz, et al., 1996). It is important to note that, the conversion efficiency of the 

three-way catalytic converters is strongly affected by the mass ratio of air to fuel 

present in the engine (Heywood, 1988), or known as the engine air-fuel ratio 

(AFR). For example, rich or stoichiometric AFR values are more favorable for 

NOx reduction, while slightly lean or stoichiometric AFR values can help lower 

the CO level. Figure 1.3 shows the effect of AFR on the conversion efficiency of 
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three-way catalyst converters. 

 

Figure 1.3 Effect of AFR on three-way catalyst efficiency (Faiz et al., 1996) 

 

The λ value in Figure 1.3 is a normalized AFR value, which is defined as: 

𝜆 =
AFRactual

AFRstoichiometric

 (1.1) 

where AFRactual  is the actual AFR of the combustion mixture, and 

AFRstoichiometric is the stoichiometric AFR value of that mixture. It is obvious 

from Eq. (1.1) that the stoichiometric λ value is 1 no matter what mixture or fuel 

blend is burnt in the engine (but the stoichiometric AFR value is different for 

different fuel blend). 

According to Figure 1.3, derivation of only 1% from the stoichiometric λ 

value can result in significant degradation on the conversion efficiency of the 

three-way catalytic converter. Thus, λ sensors (or also known as the oxygen 
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sensors) are usually installed on the three-way catalytic converter to monitor the 

status of the AFR performance and the functionality of the three-way catalytic 

converter, as shown in Figure 1.4. 

 

Figure 1.4 λ sensor and three-way catalyst on vehicle exhaust pipe (Faiz et al., 

1996) 

 

Practically, AFR control refers to the control of λ value. There are in general 

three target λ values for practical AFR control (Wong, et al., 2014): 

(i) 1.00 for highest three-way catalytic conversion efficiency; 

(ii) 0.95 for maximum engine power; and  

(iii) 1.05 for best brake-specific fuel consumption (i.e., best economy). 

Effective AFR control (i.e., λ control) is therefore essential for an 

automotive engine system to achieve different desired engine performance under 

various operating conditions, and it has been one of the most significant control 

problems for gasoline engines.  
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1.3 LITERATURE REVIEW 

In the past decades, lots of researchers have focused on the feedback control 

of the AFR, and many strategies for AFR control have been developed. In most 

production engines, AFR control is done by using proportional-integral (PI) or 

proportional-integral-derivative (PID) controllers. PI and PID controllers are 

quite stable for maintaining normal engine operation in short-term, but the 

tuning process of the gains (e.g., gain P, gain I and gain D) is arduous and 

time-consuming, and the tuned constant gains cannot guarantee the control 

performance in long-term as the AFR dynamics may gradually change due to 

engine aging. It is interesting to notice that, in recent years, Franceschi, et al. 

(2007) and Ebrahimi, et al. (2012) respectively proposed an adaptive PID 

controller and a parameter-varying filtered PID strategy for AFR control, in 

which the gains of the controller can be varied in accordance with the engine 

conditions. However, noise disturbance and the highly nonlinear nature of AFR 

dynamics could still be some serious problems for the “linear-based” PID 

controllers.  

To handle the nonlinearity of AFR, sliding-mode control (SMC) was 

extensively utilized (Puleston, et al., 2002, Won, et al., 1998). To name some, 

Choi, et al. (1998) developed an observer-based fuel injection control algorithm 



 

12 

based on SMC strategy and the results were shown to be better than engine 

factory controller. Yoon, et al. (2001) proposed an adaptive SMC strategy for 

AFR control, in which an adaptive update law was derived for the fuel 

parameters. The results in both simulations and experiments showed attractive 

control performance in transient state. Following the work of Yoon, et al. (2001), 

Souder, et al. (2004) designed an improved adaptive SMC algorithm for AFR 

control. Three adaptive laws were derived to allow the simultaneous update of 

three model parameters. Their study showed promising tracking performance in 

simulations. More recently, Pace, et al. (2012) also employed SMC for AFR 

control of a dual-fuel engine, and Ebrahimi, et al. (2014) proposed to use a 

second-order SMC strategy for AFR control of lean-burn engines.  

Despite its effectiveness for AFR control, SMC requires an analytical 

dynamic model of the “to-be-controlled” engine. An exact dynamic model is 

almost impossible to derive in reality and excessive assumption has to be made 

in the model derivation. Thus, there always exist unmodeled dynamics in SMC 

based AFR controller, for example, neither the fuel film dynamics nor the fuel 

properties were well solved in (Choi, et al., 1998). 

In view of the difficulties in deriving exact mathematical models for AFR 

dynamics, researchers have raised the idea of using artificial intelligence 
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approaches, such as fuzzy logic and machine learning techniques, for 

approximating the unknown model. Correspondingly, Al-Olimat, et al. (2000), 

Lauber, et al. (2011) and Morelos, et al. (2012) demonstrated how fuzzy logic 

can be used to estimate the engine model parameters, and the control 

performance of all these previous studies was verified via simulations, showing 

that this intelligent technique could be used for AFR control. Nevertheless, 

fuzzy logic requires expert knowledge to define the logic rules. Even an 

experienced engineer may not be able to determine an accurate sets of rules. 

The machine learning approach, on the other hand, has drawn considerable 

attention in the literature. While SMC and fuzzy logic requires prior knowledge 

in model construction, machine learning techniques aim to “learn” the model 

directly from sample data. Owing to this advantage, machine learning 

techniques have been used by many researchers for building up prediction 

models for AFR control. For instance, Manzie, et al. (2002) used a radial basis 

function network, while Beltrami, et al. (2003) used a one hidden layer 

perceptron with linear output unit, to estimate the air mass flow into the engine 

cylinder. Arsie, et al. (2006), Zhai, et al. (2010), Wong, et al. (2012), 

Sardarmehni, et al. (2013), Wong, et al. (2014) and Wong, et al. (2015) 

respectively employed different kinds of machine learning techniques, including 
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multilayer perceptron, recurrent neural network, radial basis function network, 

least-squares support vector machines, online sequential extreme learning 

machine and sparse Bayesian extreme learning machine, for AFR predictions. 

The results from all these studies showed that the predictions from ANNs are 

much better than classic observers, leading to better AFR control performance 

than traditional approaches. However, in most of these researches, the 

controllers were only evaluated by simulations, but not experimentally. 

Although machine learning techniques provide promising predictions of AFR, 

the gradient information of these methods is generally not available. Thus, an 

iterative-based optimizer is usually used for determining the control signal from 

the AFR predictions, which may be computationally inefficient for real-time 

AFR control. 

In order to overcome this issue while maintaining the use of the attractive 

machine learning approach, adaptive control may be the best choice (Spooner, et 

al., 2002). Instead of using an optimizer to determine the control signal, adaptive 

controller obtains the control law directly from the inverse of the approximation. 

Hence, no pre-defined model, no iterative-based optimizer and no prior 

knowledge are required in this control strategy. The only necessary thing for 

adaptive control using machine learning technique is the derivation of a 
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promising adaptive law, such that stable and accurate approximation of the AFR 

dynamics can be guaranteed. 

The most famous type of machine learning techniques for adaptive control 

is the artificial neural network (ANN). The critical issue of the ANN is that the 

parameters of the networks are learned/adjusted using back-propagation (BP). 

This learning scheme can easily stuck in local minima and usually requires high 

computational complexity as large amount of variables need be 

tuned/determined (e.g., input weights and output weights). Hence, it may not be 

suitable for complicated adaptive situations. In a recent study by Wong, et al. 

(2014), a machine learning technique called fully online sequential extreme 

learning machine (FOS-ELM) was proposed. The limitations of local minima, 

slow converging speed and overfitting risk suffered in the BP learning algorithm 

were addressed by the proposed FOS-ELM. Some simulations were also 

conducted in (Wong, et al., 2014) showing that FOS-ELM should be more 

effective than BP in adaptive control applications. Therefore, the FOS-ELM 

approach may be suitable for the design of an adaptive AFR controller.  

1.4 PROJECT OBJECTIVES 

In view of the advantages of using adaptive control strategy for AFR control, 

the first project objective is to design a machine-learning-based adaptive AFR 
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controller. To achieve this, the AFR dynamics are studied in associated with 

some control theories. Some intelligent techniques, such as BP and FOS-ELM, 

are reviewed and the most suitable method will be carefully selected to 

implement the AFR controller. 

The second objective is to verify the designed intelligent adaptive AFR 

controller through simulations. A simulated model is employed and the designed 

controller is set to control the simulated model and evaluate its control 

performance. To demonstrate the effectiveness of the designed controller, the 

results will be compared with other adaptive AFR control algorithms. 

Finally, the third objective of this project is to implement the designed 

intelligent adaptive AFR controller on a real engine. In order to verify that the 

designed adaptive controller is feasible for real-time AFR control, it must be 

tested experimentally and compared with the engine built-in AFR controller. 

This is the most challenging task because automotive engine is a complicated 

system that consists of many sensors, wires and components. The key point for 

finishing this objective is to truly understand the build-up of the engine, 

including the signal types of the sensors, the properties of the engine 

components, and the connections between each engine component. Moreover, 

data acquisition system and data processing program, such as National 
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Instrument devices, LabVIEW program and MATLAB program, must be well 

studied before they are used. Once the whole data acquisition system is set up, 

the adaptive controller can be implemented and evaluated experimentally. 
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CHAPTER 2:  REVIEW OF INTELLIGENT TECHNIQUES FOR 

ADAPTIVE CONTROL 

This chapter briefly reviews some of the existing intelligent techniques 

suitable for the design of adaptive controller, and determines the most suitable 

one to be used in this project. The core idea of adaptive control is to adapt to the 

controlled system by self-adjusting the parameters of the controller online based 

on the feedback of the system so that good control can be achieved. In the field 

of artificial intelligence, there exist some techniques that can realize this core 

idea of adaptive control. These include (i) back-propagation (BP) method used 

in traditional ANN, which estimates that system parameters based on gradient 

descent, and (ii) online sequential extreme learning machine (OS-ELM) and its 

improved variant (iii) fully online sequential-extreme learning machine 

(FOS-ELM), which estimation is based on recursive least-squares (RLS). 

2.1 BACK PROPAGATION 

Back propagation (BP) is a technique proposed back to thirty years ago for 

learning ANN (Rumelhart, et al., 1986). The concept of this technique is to 

calculate the gradient of the error function with respect to the network 

parameters, and update the corresponding parameters in order to optimize the 
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error function. The error function is usually defined as the difference between 

the system output and the network output. Since the introduction of this 

powerful algorithm, BP has become the most common learning method for 

neural networks (Haykin, 1999) and today many researchers are still using this 

popular method for different intelligent applications. 

For a network with one hidden layer and 𝐿 hidden nodes, the output 

function is 

𝑦 = 𝑓(𝐱) = ∑ 𝛽𝑘

𝐿

𝑘=1

ℎ𝑘(𝐱) = 𝐡(𝐱)𝜷 (2.1) 

where 𝐡(𝐱) = [ℎ1(𝐱), ℎ2(𝐱), … , ℎ𝐿(𝐱)] is the output vector of the hidden layer 

feature mapping with respect to the input 𝐱, and 𝜷 = [𝛽1, 𝛽2, … , 𝛽𝐿]T is the 

vector of output weights between the hidden layer and the output nodes. 

Now, given a training dataset S with N samples, to approximate the data 

characteristics, BP determines the optimal weights in the network by first 

comparing the network output and the desired output (target output in S) with 

the following cost function (or error function): 

Minimize: 𝐸 =  
1

2
∑(𝑦𝑖 − 𝑡𝑖)2

𝑁

𝑖

 (2.2) 

where 𝑡𝑖 is the ith desired output corresponding to the ith input-output pair. 

The way how BP adjusts the network parameters is by evaluating the partial 
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derivative of the cost function with respect to the weights: 

∇𝐸 = [
𝜕𝐸

𝜕𝛽1
,

𝜕𝐸

𝜕𝛽2
, … ,

𝜕𝐸

𝜕𝛽𝑘
]. (2.3) 

This derivate, which is also called the gradient of error, can then be used to 

update the weights, by the following delta rule as used in gradient descent 

learning: 

𝜷 = 𝜷 − 𝜂∇𝐸, (2.4) 

where 𝜂 is the user-specified learning rate which affects the speed and quality 

of the updating weights. If 𝜂 is small enough, the learned network would be 

more accurate, but a longer training time is required. A larger 𝜂  can 

significantly decrease the training time of the network, but the generalization 

performance would become worse. 

Since the BP algorithm aims to minimize the difference between the desired 

output and the network output by adjusting the network parameters through an 

iterative manner, it becomes very suitable for adaptive control. Therefore, with 

the BP algorithm, an adaptive controller has been proposed by Chen (1990) 

twenty years ago. Although this method has been used for twenty years, and the 

neural controllers were shown to perform better than traditional 

proportional-integral-derivative controllers in some recent studies (Peng, et al., 

2011, Yuan, et al., 2010), there is still one well-known critical drawback of this 
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algorithm. That is, BP is a gradient-decent based learning method which may 

easily converge to local minima (Rong, et al., 2013, Wong, et al., 2013). 

Therefore, it usually takes “more than required” steps for the controller to 

achieve satisfactorily performance. For instance, the simulation results by Chen 

(1990) showed that thousands of updating steps were needed before the 

controller could finally achieve the desired convergence. Moreover, in (Yuan, et 

al., 2010) and (Peng, et al., 2011), the controllers still take many steps to settle 

every time when the desired output is changed. These results indicate that the 

system dynamics cannot be globally approximated. Another disadvantageous 

property of BP is that, it updates the parameters in all the layers of the network, 

leading to a long processing time and hence a slow convergence speed. 

2.2 ONLINE SEQUENTIAL EXTREME LEARNING MACHINE 

Online sequential extreme learning machine (OS-ELM) is an online 

learning algorithm for single-hidden-layer feed-forward neural networks. It is 

originated from extreme learning machine (ELM), and can learn the network not 

only one-by-one but also chuck-by-chunk with fixed or varying chunk size 

(Liang, et al., 2006). It consists of two phases: initialization phase and sequential 

learning phase. 

In the initialization phase, a base ELM network is trained using a small 
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chunk of initial training data. For the same network given in Eq. (2.1) and using 

the same training dataset S with N samples, ELM aims to minimize the norm of 

the output error: 

Minimize: ‖𝑯𝜷 − 𝑻‖2 (2.5) 

where 𝑻 = [𝑡1, 𝑡2, … , 𝑡𝑁]T is the vector containing the desired output, and 𝑯 =

[𝐡(𝐱1), 𝐡(𝐱2), … , 𝐡(𝐱𝑁)]T is a 𝑁 × 𝐿 matrix used to present the hidden layer 

output and each row of 𝑯 is a training sample after feature mapping. 

Different from BP, ELM attempts to solve Eq. (2.5) using the least-squares 

(LS) method: 

𝜷 = 𝑯†𝑻 (2.6) 

where 𝑯† is the Moore-Penrose generalized inverse of matrix 𝑯. If 𝑯T𝑯 is 

non-singular, the orthogonal projection method can be used to calculate the 

pseudo-inverse of 𝑯 and 𝜷 can be re-written as: 

𝜷 = (𝑯T𝑯)−1𝑯T𝑻. (2.7) 

Therefore, denoting a subscript of 0, the base ELM network trained in the 

initialization phase of OS-ELM can be represented by: 

𝜷0 = 𝑷0𝑯0𝑻0 (2.8) 

𝑷0 = (𝑯0
T𝑯0)−1. (2.9) 

Then, in the sequential learning phase, when a new chunk of training data 
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arrives, the output weights are updated by: 

𝜷(𝑘+1) = 𝜷(𝑘) + 𝑷𝑘+1𝑯𝑘+1
T (𝑻𝑘+1 − 𝑯𝑘+1𝜷(𝑘)) (2.10) 

𝑷𝑘+1 = 𝑷𝑘 − 𝑷𝑘𝑯𝑘+1
T (𝑰 + 𝑯𝑘+1𝑷𝒌𝑯𝑘+1

T )−1𝑯𝑘+1𝑷𝑘 (2.11) 

where 𝑘 + 1 indicates the (𝑘 + 1)th arriving training data with 𝑘  starting 

from zero, and 𝑯𝑘+1 is the hidden layer output for the (𝑘 + 1)th arriving 

training data. 

The resulting parameter learning technique in OS-ELM is similar to 

recursive least-squares (RLS), which can solve the local minima problem and 

long training time issue of BP. However, there are still some factors limiting the 

direct application of OS-ELM to adaptive control. One major problem in 

OS-ELM is that, if the term 𝑯0
T𝑯0 is singular, then Eq. (2.9) is unsolvable. 

Therefore, to avoid the singular problem, OS-ELM restricts that the initial 

training dataset should have at least 𝐿 (hidden node number) distinct samples 

(Liang, et al., 2006). Yet in many practical cases, a chunk of representative 

initial data is usually difficult to obtain in advance (Wong, et al., 2014). 

Moreover, the ill-posed problems of OS-ELM could also degrade the 

performance to an unacceptable level (Huynh, et al., 2011). 

2.3 FULLY ONLINE SEQUENTIAL EXTREME LEARNING MACHINE 

Fully online sequential extreme learning machine (FOS-ELM) is an 
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improved version of OS-ELM proposed by Wong, et al. (2014). It introduces a 

regularization factor to the network to overcome the singular problem, and 

derives a novel initialization way so that no initial training data is necessary for 

the construction of a base ELM network. 

Firstly, in order to resolve the hidden-node-number-constraint of OS-ELM, 

a regularization term 𝐶 can be added to Eq. (2.9): 

𝑷0 = (𝑯0
T𝑯0 + 𝐶𝑰)−1. (2.12) 

According to the ridge regression theory, adding a small positive value into 

the diagonal of 𝑯0
T𝑯0 can avoid singular problem when the number of initial 

training data is less than the hidden nodes number. The main theory behind this 

is that, Eq. (2.9) is the solution to Eq. (2.5), which is only based on empirical 

risk minimization principle, while Eq. (2.12) is the solution of the following: 

Minimize: ‖𝑯𝜷 − 𝑻‖2 and ‖𝜷‖2 (2.13) 

in which the structural risk is also considered. The regularization term 𝐶 in Eq. 

(2.12) mainly controls the trade-off of the minimization between the empirical 

risk and the structural risk in Eq. (2.13). Therefore, the resulting solution tends 

to have better and more stable generalization performance, as verified in 

(Bartlett, 1998, Deng, et al., 2009, Huang, et al., 2010, Huang, et al., 2012). 
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Now, considering an initial training dataset 𝑆0 = {(𝑥𝑖, 𝑡𝑖)|𝑖 = 1, … , 𝑁0} 

with a corresponding hidden layer output matrix 𝑯0, using Eqs. (2.8) and (2.12), 

the output weights 𝜷0 can be calculated as: 

𝜷0 = 𝑲0
−1𝑯0

T𝑻0 (2.14) 

𝑲0 = 𝑯0
T𝑯0 + λ𝑰 (2.15) 

where  𝑻0 = [𝑡1 … 𝑡𝑁0
]T and 𝑲0

−1 = 𝑷0. 

Suppose now a new training dataset 𝑆1 = {(𝑥𝑗, 𝑡𝑗)|𝑗 = 𝑁0 + 1, … , 𝑁0 + 𝑁1} 

arrives with a corresponding hidden layer output matrix 𝑯1. By considering both 

training dataset 𝑆0 and 𝑆1, using Eqs. (2.8) and (2.12) again, the output weights 

𝜷1 should be obtained as: 

𝜷1 = 𝑲1
−1 [

𝑯0

𝑯1
]

T

[
𝑻0

𝑻1
] (2.16) 

𝑲1 = 𝑲0 + 𝑯1
T𝑯1 (2.17) 

where 𝑻1 = [𝑡𝑁0+1 … 𝑡𝑁0+𝑁1
]T . Now expanding the last two terms on the 

right-hand side of Eq. (2.16): 

[
𝑯0

𝑯1
]

T

[
𝑻0

𝑻1
] = 𝑯0

T𝑻0 + 𝑯1
T𝑻1 = 𝑲0𝜷0 + 𝑯1

T𝑻1. (2.18) 

Then, combining Eqs. (2.16), (2.17) and (2.18), 𝜷1 is obtained as: 

𝜷1 = 𝑲1
−1 [

𝑯0

𝑯1
]

T

[
𝑻0

𝑻1
] = 𝜷0 + (𝑲0 + 𝑯1

T𝑯1)−1𝑯1
T(𝑻1 − 𝑯1𝜷0). (2.19) 

Now, considering only 𝑆1, 𝜷1 can be obtained as: 
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𝜷1 = (𝑯1
T𝑯1 + 𝐶𝑰)−1𝑯1

T𝑻1. (2.20) 

Comparing (2.19) and (2.20), it is obvious that (2.20) can be obtained from 

(2.19) if and only if 𝜷0 = 𝟎 and 𝑲0 = 𝐶𝑰. Therefore, by initializing 𝜷0 = 𝟎 

and 𝑲0 = 𝐶𝑰, the initial training datasets 𝑆0 can be omitted, while a model for 

𝑆1 can still be constructed. For the sake of better understanding, the algorithm 

of FOS-ELM is summarized as below (Wong, et al., 2014): 

 STEP 1: Assign random values for input weights, and set 𝜷0 = 𝟎 

and 𝑷0 = (𝜆𝑰)−1. 

 STEP 2: For the (𝑘 + 1)th arriving training data, calculate the hidden 

layer output matrix 𝑯𝑘+1, and then update the output weights 𝜷(𝑘+1) using 

(2.10) and (2.11). 

Since the batch training in the initialization phase of OS-ELM is 

automatically integrated in FOS-ELM. FOS-ELM becomes a fully online 

sequential learning algorithm (Wong, et al., 2014), which is very suitable for 

adaptive control applications. 

 



 

27 

2.4 SUMMARY OF INTELLIGENT TECHNIQUES FOR ADAPTIVE 

CONTROL 

In this chapter, three intelligent techniques suitable for adaptive control is 

reviewed. A comparison among the three techniques is provided in Table 2.1. 

Table 2.1 Comparison among BP, OS-ELM and FOS-ELM 

 BP OS-ELM FOS-ELM 

Cost function ‖𝑯𝜷 − 𝑻‖2 ‖𝑯𝜷 − 𝑻‖2 

‖𝑯𝜷 − 𝑻‖2 and 

‖𝜷‖2  

Parameters 𝐿 and 𝜂 𝐿 𝐿 and 𝐶 

Training method Gradient descent 

Initial offline: LS 

Online: RLS 

RLS 

Initial sample number Not necessary > 𝐿 Not necessary 

Overfitting risk Yes Yes No 

Learning speed Slow Fast Fast 

 

As shown in Table 2.1, FOS-ELM has overcome the problems suffered 

from BP and OS-ELM. For instance, no initial training data is required in 

FOS-ELM as compared to OS-ELM, and the singular problem is overcome. The 

overfitting risk and slow learning speed of BP are also resolved in FOS-ELM. In 

addition, the hidden node parameters in BP are updated iteratively, while those 

in FOS-ELM are initialized randomly and remain unchanged. Thus, the local 



 

28 

minima problem of BP is also alleviated in FOS-ELM. As a result, FOS-ELM is 

selected as the intelligent technique for the design of the adaptive air-fuel ratio 

controller in this project. 
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CHAPTER 3:  DESIGN OF INTELLIGENT ADAPTIVE 

AIR-FUEL RATIO CONTROLLER 

In Chapter 2, some techniques suitable for adaptive control is reviewed and 

compared. From the comparison, FOS-ELM is selected for the design of the 

intelligent adaptive controller. This chapter mainly discusses the design of the 

controller for air-fuel ratio control using FOS-ELM. The details of the adaptive 

AFR controller is provided, followed by some simulations of the FOS-ELM 

based adaptive control algorithm to verify the design of the intelligent adaptive 

controller. A comparison with the BP based control algorithm is also given to 

evaluate the effectiveness of the controller. 

3.1 CONTROLLER DESIGN 

Theoretically, the dynamics of AFR (or λ) can be presented by a discrete 

nonlinear function: 

𝜆𝑘+1 = 𝑓(𝜆𝑘, 𝜆𝑘−1, … , 𝜆𝑘−𝑛+1, 𝑢𝑘 , 𝑢𝑘−1, … , 𝑢𝑘−𝑛+1) (3.1) 

where 𝑛 is the order of the system, 𝑘 is the time step, and 𝑢 is the control 

signal.  

Although AFR is governed by the amount of both the intake air and the 

injected fuel, usually only the amount of injected fuel is controlled as the intake 
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air is difficult to control precisely. Therefore, the control signal 𝑢 in Eq. (3.1) is 

the amount of fuel injected to the engine. Then, to determine the control law for 

achieving the target λ, the inverse of Eq. (3.1) is required: 

𝑢𝑘 = 𝑓−1(𝜆𝑑𝑘+1
|𝜆𝑘, 𝜆𝑘−1, … , 𝜆𝑘−𝑛+1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛+1) (3.2) 

where 𝜆𝑑 is the desired AFR. 

However, since the dynamics of AFR may involve many uncertainties due 

to the complex nature of engine (Wong, et al., 2013), it is practically difficult to 

derive the inverse of Eq. (3.1) explicitly. Therefore, in this project, the AFR 

dynamics is assumed to be a discrete approximated model in which the control 

appears linearly (Chen, 1990): 

𝜆𝑘+1 = 𝑔(𝜆𝑘, 𝜆𝑘−1, … , 𝜆𝑘−𝑛+1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛+1)

+ 𝜑(𝜆𝑘, 𝜆𝑘−1, … , 𝜆𝑘−𝑛+1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛+1)𝑢𝑘 

(3.3) 

where 𝜑(∙) must be a nonzero function.  

Obviously, if both 𝑔(∙) and 𝜑(∙) in Eq. (3.3) are known, the following 

control law can be used to exactly track the desired AFR: 

𝑢𝑘 =
𝜆𝑑𝑘+1

− 𝑔(∙)

𝜑(∙)
. (3.4) 

Different from PID control in which the control signal is linear to the error 

function, the functions 𝑔(∙) and 𝜑(∙) here can be nonlinear. However, since 
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𝑔(∙)  and 𝜑(∙)  cannot be obtained exactly, approximations of these two 

functions are used, denoted as 𝑔̂(∙) and 𝜑̂(∙), and the control law should 

become: 

𝑢𝑘 =
𝜆𝑑𝑘+1

− 𝑔̂(∙)

𝜑̂(∙)
. (3.5) 

Now, defining the tracking error between the target AFR and the actual AFR 

as: 

𝑒𝑘+1 = 𝜆𝑘+1 − 𝜆𝑑𝑘+1
, (3.6) 

and substituting with Eqs. (3.3) and (3.5), it is obtained that: 

𝑒𝑘+1 = 𝑔(∙) + 𝜑(∙)
𝜆𝑑𝑘+1

− 𝑔̂(∙)

𝜑̂(∙)
− 𝜆𝑑𝑘+1

. (3.7) 

It can be learnt from Eq. (3.7) that, if 𝑔(∙) − 𝑔̂(∙) → 0 and 𝜑(∙) − 𝜑̂(∙) →

0, then the tracking error 𝑒𝑘+1 → 0. Therefore, the purpose of the intelligent 

adaptive AFR controller in this project is to adjust the parameters of 𝑔̂(∙) and 

𝜑̂(∙) based on the actual AFR feedback from the controlled system so that the 

unknown 𝑔(∙) and 𝜑(∙) can be approximated and the desired target can be 

tracked. 

As discussed in Chapter 2, FOS-ELM has the ability to estimate the 

parameters online, it can be used to adaptively update the parameters of 𝑔̂(∙) 

and 𝜑̂(∙) based on the different between the actual AFR feedback and the 
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approximated AFR: 

𝑒̂𝑘+1 = 𝜆𝑘+1 − 𝜆̂𝑘+1, (3.8) 

where 𝜆̂𝑘+1 = 𝑔̂(∙) + 𝜑̂(∙)𝑢𝑘 is the approximated AFR. 

However, the approximation error 𝑒̂𝑘+1  in Eq. (3.8) is the error 

accumulated from both functions 𝑔̂(∙) and 𝜑̂(∙), and it is again difficult to 

decompose the 𝑒̂𝑘+1  for each function. To deal with this situation, the 

approximated AFR can be re-formulated as the following form:   

𝜆̂𝑘+1 = 𝑔̂(∙) + 𝜑̂(∙)𝑢𝑘 = 𝐡𝑔(∙)𝜷𝑔 + 𝐡𝜑(∙)𝜷𝜑𝑢𝑘 =

[
𝐡𝑔(∙)

𝐡𝜑(∙)𝑢𝑘
] [𝜷𝑔 𝜷𝜑]. 

(3.9) 

It is noticed that if denoting 𝑯̂ = [
𝐡𝑔(∙)

𝐡𝜑(∙)𝑢𝑘
]  and 𝜷̂ = [𝜷𝑔 𝜷𝜑] , the 

resulting form becomes only a single-hidden-layer network. Therefore, by 

updating the parameters 𝜷̂ in this only one network, both 𝑔̂(∙) and 𝜑̂(∙) can 

be updated simultaneously. Then, the adaptive law of the FOS-ELM controller 

becomes: 

𝜷̂(𝑘+1) = 𝜷̂(𝑘) + 𝑷̂𝑘+1𝑯̂𝑘+1
T 𝑒̂𝑘+1 (3.10) 

𝑷̂𝑘+1 = 𝑷̂𝑘 − 𝑷̂𝑘𝑯̂𝑘+1
T (𝑰 + 𝑯̂𝑘+1𝑷̂𝒌𝑯̂𝑘+1

T )
−1

𝑯̂𝑘+1𝑷̂𝑘. (3.11) 

With Eqs. (3.8), (3.10) and (3.11), 𝑔̂(∙) and 𝜑̂(∙) are self-tuned until the 

target is reached. The control scheme is illustrated in Figure 3.1. 
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Figure 3.1 Adaptive AFR controller 

 

3.2 SIMULATIONS ON ADAPTIVE AIR-FUEL RATIO CONTROL 

In order to verify the designed adaptive air-fuel ratio controller, simulations 

on the AFR performance of an engine were conducted. A simulated engine 

model of a 465Q gasoline engine at 3500 rpm engine speed and 85 kPa manifold 

pressure was used, given as (Li, 2007): 

𝜆𝑘+1 =
0.2 sin 𝜆𝑘 + 3.5(9 − 𝑢𝑘)

14.7
. (3.12) 

To demonstrate the effectiveness of FOS-ELM over BP for the adaptive 

air-fuel ratio controller, the simulations were also performed using BP and a 

comparison between FOS-ELM and BP was carried out. In the simulations, the 

hidden node number for both algorithms was set to 100, and the hidden layer 

activation function is radial basis function. The regularization factor C for 

FOS-ELM algorithm was set to 0.001, and the learning rate η for BP was set as 

Controller Engine
u λ

+

-

λ̂
êg(·), φ(·)^ ^

λd

FOS-ELM
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0.05. Both algorithms were implemented in MATLAB and all the simulations 

were executed in MATLAB on a PC with Intel Core i7-4790 CPU and 16GB 

RAM onboard. 

3.2.1 Simulation I 

In the first simulation, the step response of the controller was tested. The 

desired 𝜆𝑑 was set to drop from 1 to 0.95 at some point and then jump to 1.05 

afterward, and finally return back to 1. The formulation of the reference output 

in this case is: 

𝜆𝑑 = {
0.95 50 ≤ 𝑘 < 150

1.05 150 ≤ 𝑘 < 250

1 otherwise.

 (3.13) 

Based on this reference, the results of the two simulations of both 

algorithms are provided in Figures 3.2 & 3.3. 
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Figure 3.2 Control performance for FOS-ELM algorithm in Simulation I 
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Figure 3.3 Control performance for BP algorithm in Simulation I 

 

3.2.2 Simulation II 

In the second simulation, the continuous tracking performance of the 

controller was evaluated. The desired 𝜆𝑑 was set to vary between 0.95 and 1.05, 

under a sine wave reference command. The formulation for in this case is: 

𝜆𝑑 = 0.03 sin (
2𝜋𝑘

80
) + 0.02 sin (

2𝜋𝑘

40
) + 1. (3.14) 

Based on this reference, the results of the two simulations of both 

algorithms are provided in Figures 3.4 & 3.5. 



 

37 

 

Figure 3.4 Control performance for FOS-ELM algorithm in Simulation II 
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Figure 3.5 Control performance for BP algorithm in Simulation II 

 

3.3 DISCUSSION OF SIMULATION RESULTS 

The simulation results from Figures 3.2 to 3.5 show that, the control 

performance of FOS-ELM is much better than that of BP. Comparing Figures 

3.2 and 3.3, it can be learnt that every time when the desired 𝜆𝑑 value changes, 

BP requires much more steps before reaching the equilibrium state. The 

overshoot of BP is also higher than that of FOS-ELM. This shows that BP 

always tends to ‘forget’ what it has learnt (Wong, et al., 2014). This is because 

BP updates all the parameters in both the hidden layer and output layer to 



 

39 

achieve the target output, which may easily suffer from local minima (i.e., 

optimal only for the most recent arrived data). Once it is stuck in local minima, 

the parameters need to be adjusted again when the target output changes (Wong, 

et al., 2014). In contrast, FOS-ELM tends to reach a global optimal (i.e., optimal 

for all the seen data) according to the ELM theory (Huang, et al., 2015). Hence, 

as shown in Figure 3.2, once the functions 𝑔̂(∙) and 𝜑̂(∙) are globally learnt, 

the controller can directly adapt to the desired output no matter how it changes. 

The same results are also validated by Figures 3.4 and 3.5, in which FOS-ELM 

also achieves better tracking performance than BP. 

From the simulations, the designed adaptive AFR controller using 

FOS-ELM is evaluated and the results verify that the designed controller is 

feasible and effective for AFR control. It not only has a very stable and fast 

learning and adapting speed, but also achieves a very attractive tracking 

performance. Therefore, the adaptive controller based on FOS-ELM was 

confidently selected for hardware implementation. 
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CHAPTER 4:  IMPLEMENTATION OF INTELLIGENT 

ADAPTIVE AIR-FUEL RATIO CONTROLLER 

In this chapter, details of the experimental implementation of the designed 

intelligent adaptive AFR controller are provided. 

4.1 TEST BED 

A Honda Integra DC5 car with a high performance electronic controlled, 

water-cooled, 4-cylinder gasoline engine was employed as the test car (Figure 

4.1). Its specifications are provided in Table 4.1. A MoTeC M400 programmable 

electronic control unit (ECU) was used as the base controller to maintain the 

engine operation (Figure 4.2). 

Table 4.1 Engine specifications 

Base model Honda K20A – Type R 

Type Water-cooled, four-stroke, DOHC i-VTEC 

Cylinder arrangement Inline four-cylinder, transverse 

Bore and stroke 86 × 86 mm 

Displacement 1998 cc 

Compression ratio 11.5:1 

Valve train Chain drive, 16 valves 

Maximum power 160 kW @ 8000 rpm 

Maximum torque 196 N∙m @ 7000 rpm 
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Figure 4.1 Honda K20A test engine 

 

Figure 4.2 MoTeC M400 ECU for engine base control 
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4.2 CONTROL DEVICES & SOFTWARE 

To implement the designed intelligent adaptive AFR controller, three 

National Instrument (NI) devices were used, as shown in Figure 4.3. An NI 9215 

module was used for collecting analog signal, an NI 9263 module was used for 

sending analog signal, and an NI cDAQ-9178 chassis was used for signal 

transmission between the NI module and computer. The specifications of the 

two NI modules and the chassis are given in Tables 4.2 and 4.3. 

 

 

Figure 4.3 NI devices for controller implementation 
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Table 4.2 Specifications of NI modules 

Model NI 9215 NI 9263 

Type Simultaneous analog input Analog output 

Channels 4 differential 4 

Signal range ±10 V ±10 V 

Sample rate 100 kS/s/ch 100 kS/s/ch 

Resolution 16-Bit 16-Bit 

 

Table 4.3 Specifications of NI chassis 

Model NI cDAQ-9178 

Slots 8 

Counters 4 

Number of simultaneous tasks 7 

Number of AI timing engines 3 

BNC triggers connections Up to 1 MHz clocks and triggers 

 

A LabVIEW 2012 software was installed on a computer, which was a 

graphical programming platform for the users to control the NI devices. In other 

words, the NI devices serve as the interface between the engine signal and the 

computer, and LabVIEW program serves as the interface between the computer 

and users. In LabVIEW, a MATLAB plugin is available such that the MATLAB 

script can be embedded directly. The connection between the devices is shown 
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in Figure 4.4. Details of the interface between the engine, NI devices, LabVIEW 

and MATLAB are provided in the following Section 4.3.  

 

Figure 4.4 Connection between the devices and software 

 

4.3 ENGINE – LABVIEW INTERFACE 

There are many kinds of sensors installed at various part of engine to 

monitor the operation status of engine. In this project, the sensor signals from 

four engine parameters, namely (i) engine speed, (ii) throttle position, (iii) fuel 

injection time and (iv) λ value, were acquired for the controller. As it was 

difficult to find out all the corresponding sensors on the engines, the wiring 

between the ECU and the test engine was studied, as shown in Figure 4.5.  

ECU

Honda K20A 

Test Engine

NI 9215

NI 9263

NI cDAQ-9178 

chassis

Base control
Sensor 

signal

Control 

signal

MATLAB

LabVIEW

Control algorithm

Computer
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Figure 4.5 ECU wiring 

 

It can be learnt from the ECU wiring that, the throttle position, fuel 

injection time and λ value can be acquired from pins A14, A19 to A22 and B25 



 

46 

respectively, while the engine speed can be acquired from pin A23 of the ECU. 

For controlling the fuel injection, instead of sending control signal directly to the 

engine fuel injectors, the control signal can be sent to the ECU and the ECU will 

convert the user given control signal into the control signal of the fuel injectors. 

This control signal could be sent to ECU using pin A16. As indicated in Figure 

4.5, the connection pins in red circles are for collecting signal, and in blue 

rectangle are for sending signal. A summary of the connection setup is provided 

in Table 4.4. 

 

Table 4.4 Specifications of NI modules 

Parameter Connection pin in ECU 

Engine speed A26 

Throttle position A14 

fuel injection time A19 

λ B25 

Control signal A16 

Ground B16 

 

Before the implementation of the controller, the properties of the signals 

transmitted between the sensors and LabVIEW were studied, which is provided 

in the following sub-sections.  
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4.3.1 Engine speed 

The sensor used for measuring engine speed of the test engine is a 

tachometer. The property of the signal is captured as shown in Figure 4.6. The 

raw signal shows that the tachometer generates pulses of which the frequencies 

are in accordance with the engine speed. Therefore, a “Pulse Measurement” 

module was used in the LabVIEW program to convert the signal into 

meaningful engine speed measurement. 

 

Figure 4.6 Raw signal of engine speed 

 

4.3.2 Throttle position 

The throttle position sensor of the test engine has a voltage range of 0.5V ~ 

4.5V. The output voltage of the sensor is linearly proportional to the throttle 
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position in %. Thus, by scaling the analog voltage signal from the sensor, the 

throttle position can be acquired in LabVIEW. 

4.3.3 Fuel injection time 

The signal of the fuel injection time is the time within which the fuel 

injector is turned on, that is, the duration of fuel injection. To acquire this signal, 

a “Timing and Transition Measurement” module was used in LabVIEW. 

4.3.4 λ value 

The λ sensor sent out voltage signal that is same as the actual λ value, so it 

can be measured directly in LabVIEW. 

4.3.5 Control signal 

As mentioned, the signal for the control of fuel injection has to be sent to 

the ECU and let ECU convert the user provided signal into engine control signal. 

The user provided signal, which is the signal calculated by the controller, was 

sent to the ECU in analog with range of 1V ~ 9V. In the programmable ECU, a 

user channel was defined for the conversion of the given signal into engine 

control signal, as shown in Figure 4.7. 
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Figure 4.7 Defining channel in ECU for providing user control signal 

 

4.4 LABVIEW – MATLAB INTERFACE 

As the control algorithm has already been implemented in MATLAB, to 

allow the direct use of the MATLAB script, a “MATLAB Script Node” module 

was used. By embedding the algorithm in the LabVIEW program, the interface 

between the controller and the engine was completed. Figures 4.8 & 4.9 show 

the user interface (front panel) and the hardware interface (block diagram) of the 

LabVIEW program. 
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Figure 4.8 User interface of the LabVIEW program 

 

 

Figure 4.9 Interface between LabVIEW and NI devices 

 

With this program and the NI devices, the designed controller was 

successfully implemented on the engine. Then, the effectiveness of the 

controller could be tested and evaluated through this hardware system.  
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CHAPTER 5:  EXPERIMENTAL RESULTS 

The experimental results of the designed intelligent adaptive AFR controller 

are presented in this chapter. Two tests were performed to evaluate the 

effectiveness of the controller. The parameters of the controller were same as 

those used in the simulation tests in Chapter 3. That is, the hidden node number 

is 100, and the regularization factor is 0.001. To demonstrate its effectiveness, 

the adaptive AFR controller was also compared with the engine built-in AFR 

controller. 

5.1 TEST I – TRACKING ABILITY FOR CHANGE OF TARGET 

Test I is designed to evaluate the tracking ability of the adaptive controller 

for change of target. In this test, the engine was started and warmed up until 

steady-state was reached, which was indicated by the intake air temperature and 

engine temperature. At the steady-state, the engine was kept at idle speed and 

the throttle position was fixed at 0%. The initial parameters of the controller, 

such as the number of hidden nodes and the regularization factor, were defined 

in the MATLAB workspace of the LabVIEW program first, and then the 

LabVIEW was run so that the intelligent adaptive AFR controller could be 

turned on. In the beginning, the desired λ value stayed at 1.00 (stoichiometric 
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value for maximum conversion efficiency of the three-way catalyst) for a short 

period of time. Then the desired λ value was changed to 1.05 (for best specific 

fuel consumption) for about 30s and finally changed back to 1.00 so that the 

tracking performance could be evaluated. The same procedure was then repeated 

again with the only difference that a desired λ value of 0.95 (for maximum 

engine power) was used instead of 1.05 in the 30s duration. For comparison 

purpose, both the designed AFR controller and the engine built-in AFR 

controller has undergone the same test procedure. The results of this test are 

given in Figures 5.1 to 5.4. 
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Figure 5.1 Performance of the designed controller for desired λ value varied 

among 1 and 1.05 
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Figure 5.2 Performance of the engine built-in controller for desired λ value 

varied among 1 and 1.05 
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Figure 5.3 Performance of the designed controller for desired λ value varied 

among 1 and 0.95 
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Figure 5.4 Performance of the engine built-in controller for desired λ value 

varied among 1 and 0.95 
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back to 0%. The result of this test is given in Figures 5.5 and 5.6. 

 

Figure 5.5 Performance of the designed controller for throttle position varied 

among 0% and 10% 
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Figure 5.6 Performance of the engine built-in controller for throttle position 

varied among 0% and 10% 
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changed either from 1.00 to 1.05 or from 1.00 to 0.95, the controller could 

immediately adjust the fuel injection time to achieve the desired λ value. From 

Figure 5.5, the design controller could successfully regulate the fuel injection 

time for the change of throttle position too. The response time and the tracking 

performance are all within an acceptable range. By comparing Figure 5.1 with 

5.2, Figure 5.3 with 5.4, and Figure 5.5 with 5.6, it can also be learnt that the 

designed adaptive AFR controller outperforms the engine built-in AFR 

controller in both the response time and tracking performance. To quantify the 

control performance of the controllers, the integral absolute errors (IAE) of the 

control results were calculated using the following Eq. (5.1) and shown in Table 

5.1: 

𝐼𝐴𝐸 = ∫|𝜆(𝑡) − 𝜆𝑑(𝑡)|𝑑𝑡 = ∑ |𝜆(𝑡) − 𝜆𝑑(𝑡)|
𝐸𝑛𝑑 𝑜𝑓 𝑡𝑒𝑠𝑡

𝑡=0
. (5.1) 

 

Table 5.1 IAE results of Test I and Test II 

 Test I (λd = 1.05) Test I (λd = 0.95) Test II 

Designed controller 92.12 52.77 333.47 

Engine built-in 

controller 
132.07 101.94 465.41 

Improvement 30.25% 48.24% 28.35% 
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It is clear from the comparison in Table 5.1 that the control performance of 

the designed controller is much better than that of the engine built-in controller. 

The AFR control performance has been improved by 28.35% up to 48.24%. This 

is a very significant result, especially for such tough control task, showing that 

the designed AFR controller is very useful and effective for AFR control. 

Although the transient response of the designed controller for change of 

throttle may not be very appealing, this is still reasonable because when the 

throttle position was changed, the corresponding AFR dynamics was also altered, 

and hence it may take a short period of time for the adaptive controller to adjust 

its controller parameters in order to adapt to the new AFR dynamics. It has to be 

noted that, unlike other approaches where prior data and pre-trained were 

available, the designed adaptive controller does not use any pre-acquired data to 

determine the best controller parameters in advanced. The learning process 

(parameter adjusting process) is performed online together with the control 

process. Taking into account of this property, the experimental results for the 

designed controller are indeed quite acceptable. All in all, it has been verified by 

experiments that AFR control using intelligent adaptive approach is feasible and 

promising. 
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CHAPTER 6:  CONCLUSIONS 

6.1 SUMMARY 

In this project, an intelligent adaptive controller for air-fuel ratio (AFR) 

control of an automotive engine system is developed. By studying some 

intelligent techniques suitable for adaptive control, a machine learning method 

called fully online sequential extreme learning machine (FOS-ELM) was 

selected. A controller was designed based on FOS-ELM, and some simulations 

were conducted to verify the designed controller. The simulation results showed 

that the designed controller could achieve better tracking performance than other 

adaptive method. Therefore, the controller was confidently implemented in a 

real test engine. 

Experiments were then set-up in which NI devices, LabVIEW, MATLAB 

and MoTeC programmable ECU were utilized. The signals of the engine sensors 

were studied and analyzed so that the controller could be successfully 

implemented on the test engine. The experimental results demonstrated that the 

designed intelligent adaptive AFR controller could outperform the engine 

built-in AFR controller by about 28.35% to 48.24%, showing that the designed 

controller is effective and promising for maintaining the AFR to a desired level. 
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6.2 ORIGINALITIES 

The originalities of this project include: 

1) A newly designed intelligent adaptive controller for AFR control of an 

automotive engine system, in which no prior knowledge, no pre-trained 

model and no optimizer are required; 

2) A comparison between two artificial intelligence techniques, namely 

FOS-ELM and BP, for adaptive control problem; 

3) A first attempt to implement an intelligent adaptive AFR controller on 

real test engine; 

4) A comparison between the designed intelligent adaptive AFR controller 

and engine built-in AFR controller. 

6.3 RECOMMENDATION FOR FUTURE WORK 

Based on the designed intelligent adaptive AFR controller, further 

researches on the AFR control under different fuel blends can be conducted in 

the future. The limitations in hardware implementation, such as the time delay 

problem and the signal noise problem, will be analyzed and hopefully be 

resolved in the following work. Moreover, more comparison on different control 

strategies, such as sliding mode control, model predictive control and fuzzy 

logic control, for AFR control can be carried out to further evaluate the 
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effectiveness of the adaptive controller. Furthermore, by studying the 

input-output relationships of other engine parameters, intelligent adaptive 

controllers for other engine control applications, such as idle speed control, can 

also be designed and implemented. In addition, it is recommended to apply the 

same strategy to other intelligent control applications too. 
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APPENDIX II: MATLAB CODE 

Simulation, FOS-ELM: 

clear all; 

close all; 

  

nm = 300; %max iteration 

nT = 1; % number of training data arrived each time 

nI = 1; % number of input 

nH = 100; % number of hidden nodes 

nO = 1; % number of output 

C = 0.001; % regularization factor 

WR = 1; %weight for recursive least-squares [0.9 1] 

  

IW = rand(nH,nI)*2-1; % initial input weight 

Bias = rand(nH,1);  % initial bias of hidden node 

ind = ones(1,nT); 

BiasMatrix = Bias(:,ind); %create a matrix of bias for ease of 

calculation 

  

P = inv(C*eye(nH)); % initial P 

beta = zeros(nH,nO); % initial beta 

  

% generate reference output 

% case I 

yr = ones(301,1); 

yr(51:150) = 0.95; 

yr(151:250) = 1.05; 

% case II 

for k = 1:nm 

    yr(k) = 0.03 * sin(2*pi*k/80) + 0.02 * sin(2*pi*k/40) + 1; 

end 

t(1:nm) = 1:1:nm; 

  

y0 = 1; % initial y(k-1) 

u0 = 4.85; % initial u(k-1) 
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for k = 1:nm 

    if k == 1 % initial model 

        y(k) = (0.2*sin(y0)+3.5*(9-u0))/14.7; % actual output from the 

plant 

         

        H = exp(-((IW*y0 + BiasMatrix).*(IW*y0 + BiasMatrix)))'; % rbf 

        Hu = H(1:(nH/2)); 

        Hd = H(((nH/2)+1):nH); 

        Hdu = Hd*u0; 

        H = [Hu,Hdu]; 

        ym(k) = H * beta; % model output 

        e(k) = y(k) - ym(k); 

        P = P - WR * (P * H' * H * P) / (1 + WR * H * P * H'); % update 

law 

        beta = beta + WR * P * H' * e(k); % update law 

        y0 = y(k); 

        u(k) = u0; 

    else 

        H = exp(-((IW*y0 + BiasMatrix).*(IW*y0 + BiasMatrix)))'; % rbf 

        %H = 1 ./ (1+exp(-(IW * y0 + BiasMatrix)))'; % sigmoid 

        Hu = H(1:(nH/2)); 

        Hd = H(((nH/2)+1):nH); 

        bu=beta(1:(nH/2)); 

        bd=beta(((nH/2)+1):nH); 

        u0=(yr(k)-Hu*bu)/(Hd*bd); % control law 

       

        y(k) = (0.2*sin(y0)+3.5*(9-u0))/14.7; % actual output from the 

plant 

         

        Hdu = Hd*u0; 

        H = [Hu,Hdu]; 

        ym(k) = H * beta; % model output 

        e(k) = y(k) - ym(k); 

        P = P - WR * (P * H' * H * P) / (1 + WR * H * P * H'); % update 

law 

        beta = beta + WR * P * H' * e(k); % update law 

        y0 = y(k); 

        u(k) = u0; 
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    end 

end 

figure('Position',[300 200 540 450]) 

subplot(2,1,1);plot(t,yr(1:nm),'b--',t,y,'r'); 

xlabel('\itk \rm(step)');ylabel('\lambda','rot',0);axis([1 300 0.9 

1.15]);legend('Reference','Actual'); 

subplot(2,1,2);plot(t,u,'r'); 

xlabel('\itk \rm(step)');ylabel('\it u','rot',0);axis([1 300 4 6]); 

 

Simulation, BP: 

clear all; 

close all; 

  

nm = 300; %max iteration 

nT = 1; % number of training data arrived each time 

nI = 1; % number of input 

nH = 100; % number of hidden nodes 

nO = 1; % number of output 

lr = 0.05; % learning rate 

Wij = rands(nH,nI); % initial input weight 

Wki = rands(nO,nH); % initial output weight 

Wij0 = zeros(size(Wij)); 

Wki0 = zeros(size(Wki)); 

  

% generate reference output 

% case I 

yr = ones(301,1); 

yr(51:150) = 0.95; 

yr(151:250) = 1.05; 

% case II 

for k = 1:nm 

    yr(k) = 0.03 * sin(2*pi*k/80) + 0.02 * sin(2*pi*k/40) + 1; 

end 

t(1:nm) = 1:1:nm; 

 

y0 = 1.0; % initial y(k-1) 

u0 = 4.85; % initial u(k-1) 
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for k = 1:nm 

     y(k) = (0.2*sin(y0)+3.5*(9-u0))/14.7; % actual output from the 

plant 

     

     neti = Wij * y(k); %input to hidden node 

     for j = 1:nH 

        Oi(j) = exp(-(neti(j)*neti(j))); 

     end 

     Ok = Wki * Oi'; %network output 

     u(k) = 9 - (14.7*yr(k+1) - Ok) / 3.5; 

     y1(k) =  (0.2*sin(y(k))+3.5*(9-u(k)))/14.7; 

     u0 = u(k); %replace u(k-1) for next iteration 

     y0 = y(k); %replace y(k-1) for next iteration 

     e(k+1) = y1(k) - yr(k+1); 

     for i = 1:nH 

        dWki(i) = lr*e(k+1)*Oi(i); %bp output weight update 

     end 

     Wki1 = Wki+dWki; %compute output weight for k+1 

     Wki0 = Wki; %replace Wki(k-1) 

     Wki = Wki1; %replace Wki(k) 

     for i = 1:nH 

        dfi(i) = -2 * exp(-(neti(j)*neti(j))) * neti(j); 

     end 

      

     dWij = lr*e(k+1)*dfi.*Wki*y(k);  %bp input weight update 

     Wij1 = Wij+dWij'; %compute input weight for k+1 

     Wij0 = Wij; %replace Wij(k-1) 

     Wij = Wij1; %replace Wij(k) 

end 

figure('Position',[300 200 540 450]) 

subplot(2,1,1);plot(t,yr(1:nm),'b--',t,y,'r'); 

xlabel('\itk \rm(step)');ylabel('\lambda','rot',0);axis([1 300 0.9 

1.15]);legend('Reference','Actual'); 

subplot(2,1,2);plot(t,u,'r'); 

xlabel('\itk \rm(step)');ylabel('\it u','rot',0);axis([1 300 4 6]); 


